IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040155.html
   My bibliography  Save this article

A novel route for coal-fired power plants flexibility through the integration of H2/O2 burning and solid oxide electrolysis cells: Design and performance evaluation

Author

Listed:
  • Zhang, Hao
  • Wang, Xiaozhe
  • Guo, Haowei
  • Zang, Pengchao
  • Wang, Lei
  • Zhao, Haorao
  • Dong, Yong

Abstract

The flexible operation of coal-fired power plants (CFPPs) is of significant importance for the penetration of large-scale renewable energy and can enhance the stability and reliability towards the power grid. As an alternative solution, coupled solid oxide electrolysis cells (SOEC) and H2/O2 burning technology allows for both the flexibility of CFPPs and low-cost H2 production. For the integration system proposed in this paper, the extra main steam from CFPPs in extracted for H2 production during the charging process while H2/O2 burning is adopted for additional power generation during the discharging process. For SOEC, a maximum H2 production capacity of 6.1 kg/s with the corresponding unit electrical consumption of 3.328 kWh/Nm3 can be achieved during the charging process. The maximum power generation growth for CFPPs rises from 223 MW to 240 MW with increasing operation temperatures of SOEC during the discharging process. The integration system can achieve a lowest unit load of 14.2 % THA with a maximum round-trip efficiency of 74.65 %. Exergy analysis indicates that the exergy efficiencies of the turbine and extraction system in the discharging process are higher than those in the charging process while the maximum exergy efficiencies of the H2/O2 burner and SOEC are available under 700 °C for SOEC.

Suggested Citation

  • Zhang, Hao & Wang, Xiaozhe & Guo, Haowei & Zang, Pengchao & Wang, Lei & Zhao, Haorao & Dong, Yong, 2025. "A novel route for coal-fired power plants flexibility through the integration of H2/O2 burning and solid oxide electrolysis cells: Design and performance evaluation," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040155
    DOI: 10.1016/j.energy.2024.134237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ligang & Pérez-Fortes, Mar & Madi, Hossein & Diethelm, Stefan & herle, Jan Van & Maréchal, François, 2018. "Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis," Applied Energy, Elsevier, vol. 211(C), pages 1060-1079.
    2. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    3. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    4. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic," Energy, Elsevier, vol. 276(C).
    5. Zhang, Shuhao & Zhang, Nan & Smith, Robin & Wang, Wanrong, 2022. "A zero carbon route to the supply of high-temperature heat through the integration of solid oxide electrolysis cells and H2–O2 combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Stathopoulos, P. & Sleem, T. & Paschereit, C.O., 2017. "Steam generation with stoichiometric combustion of H2/O2 as a way to simultaneously provide primary control reserve and energy storage," Applied Energy, Elsevier, vol. 205(C), pages 692-702.
    7. Abbas, Jawad & Wang, Lisu & Ben Belgacem, Samira & Pawar, Puja Sunil & Najam, Hina & Abbas, Jaffar, 2023. "Investment in renewable energy and electricity output: Role of green finance, environmental tax, and geopolitical risk: Empirical evidence from China," Energy, Elsevier, vol. 269(C).
    8. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    9. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    10. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    11. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "Low load performance of tangentially-fired boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 224(C).
    12. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    13. Stepanov, V.S., 1995. "Chemical energies and exergies of fuels," Energy, Elsevier, vol. 20(3), pages 235-242.
    14. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Miao, Lin & Liu, Ming & Zhang, Kezhen & Zhao, Yongliang & Yan, Junjie, 2023. "Energy, exergy, and economic analyses on coal-fired power plants integrated with the power-to-heat thermal energy storage system," Energy, Elsevier, vol. 284(C).
    3. Hou, Guolian & Ye, Lingling & Huang, Ting & Huang, Congzhi, 2024. "Intelligent modeling of combined heat and power unit under full operating conditions via improved crossformer and precise sparrow search algorithm," Energy, Elsevier, vol. 308(C).
    4. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    5. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    6. Min, Gyubin & Choi, Saeyoung & Hong, Jongsup, 2022. "A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration," Applied Energy, Elsevier, vol. 328(C).
    7. Nowak, Grzegorz & Rusin, Andrzej & Łukowicz, Henryk & Tomala, Martyna, 2020. "Improving the power unit operation flexibility by the turbine start-up optimization," Energy, Elsevier, vol. 198(C).
    8. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    9. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    10. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    11. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    12. Hafiz Salami & Kingsley Okpara & Chomsri Choochuay & Techato Kuaanan & David Akeju & Manasseh Shitta, 2025. "Domestic energy consumption, theories, and policies: a systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 5821-5867, March.
    13. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    14. Yan, Xiang & Xin, Boqing & Cheng, Changgao & Han, Zhiyong, 2024. "Unpacking energy consumption in China's urbanization: Industry development, population growth, and spatial expansion," Research in International Business and Finance, Elsevier, vol. 70(PA).
    15. LIU Xiangling & Md Qamruzzaman, 2024. "The role of ICT investment, digital financial inclusion, and environmental tax in promoting sustainable energy development in the MENA region: Evidences with Dynamic Common Correlated Effects (DCE) an," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-30, May.
    16. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    17. Zhao, Qian & Su, Chi-Wei & Qin, Meng & Umar, Muhammad, 2023. "Is global renewable energy development a curse or blessing for economic growth? Evidence from China," Energy, Elsevier, vol. 285(C).
    18. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    19. Muntazir Hussain & Ramiz Ur Rehman & Usman Bashir, 2024. "Environmental pollution, innovation, and financial development: an empirical investigation in selected industrialized countries using the panel ARDL approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29217-29248, November.
    20. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.