IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225003214.html
   My bibliography  Save this article

Development of thermal control strategies for solid oxide electrolysis cell systems under dynamic operating conditions - Hot-standby and cold-start scenarios

Author

Listed:
  • Kim, Jun Yong
  • Mastropasqua, Luca
  • Saeedmanesh, Alireza
  • Brouwer, Jack

Abstract

Hydrogen can be produced with solid oxide electrolysis cells (SOEC) at high temperature with higher electric-to-hydrogen efficiency compared to existing low temperature electrolysis cells. But, SOEC systems are not known to operate in a highly dynamic fashion, which may be required for integration with renewable primary energy. We propose and study thermal management strategies for SOEC systems under dynamic operating conditions including hot-standby and cold-start operations. During the startup process from room temperature, the necessary heating is provided by electric heaters, which are activated at the start of the operation. During the full shutdown process, electric heaters are deactivated, and cooling is provided only by the air blower. The developed model shows that the proposed system can operate dynamically at a very high ramp rate of 0.073 A/cm2 per minute in the case of an urgent rapid shutdown or start up to and from hot-standby, and can also safely manage the dynamics of a complete shutdown and cold-start operation.

Suggested Citation

  • Kim, Jun Yong & Mastropasqua, Luca & Saeedmanesh, Alireza & Brouwer, Jack, 2025. "Development of thermal control strategies for solid oxide electrolysis cell systems under dynamic operating conditions - Hot-standby and cold-start scenarios," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003214
    DOI: 10.1016/j.energy.2025.134679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    2. Stephanie E. Wolf & Vaibhav Vibhu & Eric Tröster & Izaak C. Vinke & Rüdiger-A. Eichel & L. G. J. (Bert) de Haart, 2022. "Steam Electrolysis vs. Co-Electrolysis: Mechanistic Studies of Long-Term Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2018. "Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production," Applied Energy, Elsevier, vol. 225(C), pages 471-485.
    4. Kim, Jong Suk & Boardman, Richard D. & Bragg-Sitton, Shannon M., 2018. "Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems," Applied Energy, Elsevier, vol. 228(C), pages 2090-2110.
    5. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    6. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    2. Jalili, Mohammad & Ghazanfari Holagh, Shahriyar & Chitsaz, Ata & Song, Jian & Markides, Christos N., 2023. "Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 329(C).
    3. Li, Yongwei & Fu, Zaiguo & Li, Jingfa & Shao, Yan & Zhu, Qunzhi & Yuan, Binxia, 2024. "Effects of structural parameters of double-layer electrode on co-electrolysis in a solid oxide electrolysis cell," Energy, Elsevier, vol. 287(C).
    4. Zhang, Biao & Harun, Nor Farida & Zhou, Nana & Oryshchyn, Danylo & Colon-Rodriguez, Jose J. & Shadle, Lawrence & Bayham, Samuel & Tucker, David, 2025. "A real-time distributed solid oxide electrolysis cell (SOEC) model for cyber-physical simulation," Applied Energy, Elsevier, vol. 388(C).
    5. Jiming Yuan & Zeming Li & Benfeng Yuan & Guoping Xiao & Tao Li & Jian-Qiang Wang, 2023. "Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation," Energies, MDPI, vol. 16(6), pages 1-18, March.
    6. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    7. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    8. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    9. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    10. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    11. Lin, Zihan & Khan, Muhammad Sajid & Chen, Ji & Xia, Qi & Ma, Kewei & Ding, Weihua & Jiao, Long & Gao, Zengliang & Chen, Chen, 2024. "Solar methanol production from carbon dioxide and water using NaA zeolitic membrane reactor with pressurized solid oxide electrolysis cell," Energy, Elsevier, vol. 311(C).
    12. Towhid Gholizadeh & Hamed Ghiasirad & Anna Skorek-Osikowska, 2024. "Sustainable Biomethanol and Biomethane Production via Anaerobic Digestion, Oxy-Fuel Gas Turbine and Amine Scrubbing CO 2 Capture," Energies, MDPI, vol. 17(18), pages 1-23, September.
    13. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    14. Hu, Jiang & Abed, Azher M. & Talib, Zunirah Mohd & Alghassab, Mohammed A. & Abdullaev, Sherzod & Ghandour, Raymond & Hamlaoui, Oumayma & Alhomayani, Fahad M. & Dutta, Ashit Kumar & Jastaneyah, Zuhair, 2025. "Technical, economic, and environmental study with ANN-based optimization of a biomass-powered versatile/sustainable polygeneration system with carbon capture/utilization approach," Energy, Elsevier, vol. 315(C).
    15. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    16. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    17. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    18. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    19. Yingqi Liu & Liusheng Xiao & Hao Wang & Dingrong Ou & Jinliang Yuan, 2024. "Numerical Study of H 2 Production and Thermal Stress for Solid Oxide Electrolysis Cells with Various Ribs/Channels," Energies, MDPI, vol. 17(2), pages 1-26, January.
    20. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.