IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61956-y.html
   My bibliography  Save this article

Newly established forests dominated global carbon sequestration change induced by land cover conversions

Author

Listed:
  • Dailiang Peng

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences)

  • Bing Zhang

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shijun Zheng

    (Tsinghua University)

  • Weimin Ju

    (Nanjing University)

  • Jing M. Chen

    (University of Toronto)

  • Philippe Ciais

    (CEA CNRS UVSQ Orme des Merisiers)

  • Huadong Guo

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuhao Pan

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences)

  • Le Yu

    (Tsinghua University
    Ministry of Education Ecological Field Station for East Asian Migratory Birds
    Tsinghua University (Department of Earth System Science)- Xi’an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping)

  • Yidi Xu

    (CEA CNRS UVSQ Orme des Merisiers)

  • Bin Zhao

    (Shangdong Agricultural University)

  • Jón Atli Benediktsson

    (University of Iceland)

  • Alfredo R. Huete

    (Faculty of Science)

  • Zhou Shi

    (Zhejiang University)

  • Yueming Hu

    (Hainan University)

  • Liangyun Liu

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences)

  • Fang Chen

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences)

  • Miaogen Shen

    (Beijing Normal University)

  • Lei Huang

    (International Research Center of Big Data for Sustainable Development Goals
    Chinese Academy of Sciences)

  • Xiaoyang Zhang

    (South Dakota State University)

Abstract

Land cover conversions (LCC) have substantially reshaped terrestrial carbon dynamics, yet their net impact on carbon sequestration remains uncertain. Here, we use the remote sensing-driven BEPS model and high-resolution HILDA+ data to quantify LCC-induced changes in net ecosystem productivity (NEP) from 1981 to 2019. Despite global forest loss and cropland/urban expansion, LCC led to a net carbon gain of 229 Tg C. Afforestation and reforestation increased NEP by 1559 Tg C, largely offsetting deforestation-driven losses (−1544 Tg C), with newly established forests in the Northern Hemisphere driving gains that counterbalanced emissions from tropical deforestation. Regional carbon gains were concentrated in East Asia, North America, and Europe, while losses occurred mainly in the Amazon and Southeast Asia. Although smaller in area, newly established forests exhibited higher sequestration efficiency than degraded older forests, emphasizing the role of forest age in shaping global carbon sink dynamics. These findings highlight the critical importance of afforestation, forest management, and spatially informed land-use strategies in strengthening carbon sinks and supporting global carbon neutrality goals.

Suggested Citation

  • Dailiang Peng & Bing Zhang & Shijun Zheng & Weimin Ju & Jing M. Chen & Philippe Ciais & Huadong Guo & Yuhao Pan & Le Yu & Yidi Xu & Bin Zhao & Jón Atli Benediktsson & Alfredo R. Huete & Zhou Shi & Yue, 2025. "Newly established forests dominated global carbon sequestration change induced by land cover conversions," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61956-y
    DOI: 10.1038/s41467-025-61956-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61956-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61956-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hostert, Patrick & Kuemmerle, Tobias & Prishchepov, Alexander & Sieber, Anika & Lambin, Eric F. & Radeloff, Volker C., 2011. "Rapid land use change after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6(4), pages 1-8.
    2. W. Kolby Smith & Sasha C. Reed & Cory C. Cleveland & Ashley P. Ballantyne & William R. L. Anderegg & William R. Wieder & Yi Y. Liu & Steven W. Running, 2016. "Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization," Nature Climate Change, Nature, vol. 6(3), pages 306-310, March.
    3. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    4. Chen, Baozhang & Chen, Jing M. & Ju, Weimin, 2007. "Remote sensing-based ecosystem–atmosphere simulation scheme (EASS)—Model formulation and test with multiple-year data," Ecological Modelling, Elsevier, vol. 209(2), pages 277-300.
    5. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    6. Xiaoping Liu & Fengsong Pei & Youyue Wen & Xia Li & Shaojian Wang & Changjiang Wu & Yiling Cai & Jianguo Wu & Jun Chen & Kuishuang Feng & Junguo Liu & Klaus Hubacek & Steven J. Davis & Wenping Yuan & , 2019. "Global urban expansion offsets climate-driven increases in terrestrial net primary productivity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    8. Belinda Arunarwati Margono & Peter V. Potapov & Svetlana Turubanova & Fred Stolle & Matthew C. Hansen, 2014. "Primary forest cover loss in Indonesia over 2000–2012," Nature Climate Change, Nature, vol. 4(8), pages 730-735, August.
    9. Fabio R. Marin & Alencar J. Zanon & Juan P. Monzon & José F. Andrade & Evandro H. F. M. Silva & Gean L. Richter & Luis A. S. Antolin & Bruna S. M. R. Ribeiro & Giovana G. Ribas & Rafael Battisti & Ale, 2022. "Protecting the Amazon forest and reducing global warming via agricultural intensification," Nature Sustainability, Nature, vol. 5(12), pages 1018-1026, December.
    10. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    11. Paradis, Emmanuel, 2021. "Forest gains and losses in Southeast Asia over 27 years: The slow convergence towards reforestation," Forest Policy and Economics, Elsevier, vol. 122(C).
    12. Enzai Du, 2015. "Uncertain effects of nutrient availability on global forest carbon balance," Nature Climate Change, Nature, vol. 5(11), pages 958-959, November.
    13. Bernard Bashaasha & David S. Kraybill & Douglas D. Southgate, 2001. "Land Use Impacts of Agricultural Intensification and Fuelwood Taxation in Uganda," Land Economics, University of Wisconsin Press, vol. 77(2), pages 241-249.
    14. Karina Winkler & Richard Fuchs & Mark Rounsevell & Martin Herold, 2021. "Global land use changes are four times greater than previously estimated," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Eilidh J. Forster & John R. Healey & Caren Dymond & David Styles, 2021. "Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Bartels, Lara & Kesternich, Martin & Löschel, Andreas, 2021. "The demand for voluntary carbon sequestration: Experimental evidence from a reforestation project in Germany," ZEW Discussion Papers 21-088, ZEW - Leibniz Centre for European Economic Research.
    3. Xingbo Yin, 2022. "The influence of urbanization on vegetation carbon pools under a tele-coupling framework in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4046-4063, March.
    4. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    5. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    6. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    7. Shengbiao Wu & Bin Chen & Chris Webster & Bing Xu & Peng Gong, 2023. "Improved human greenspace exposure equality during 21st century urbanization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    9. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    10. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    11. Tutar, Halit & Eren, Ömer & Er, Hasan & Gonulal, Erdal & Gokdogan, Osman, 2025. "Field-based experimental greenhouse gas emissions and energy use efficiency study of sorghum x sudan grass hybrid growth in a semi-arid region," Energy, Elsevier, vol. 315(C).
    12. Jeetendra P. Aryal, 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    13. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    15. de Jong, Johan & Poorter, Lourens & de Jong, Wil & Bongers, Frans & Lohbeck, Madelon & Veenendaal, Elmar & Meave, Jorge A. & Jakovac, Catarina C. & Brancalion, Pedro H.S. & Amissah, Lucy & Martínez-Ra, 2025. "Dissecting forest transition: Contribution of mature forests, second-growth forests and tree plantations to tree cover dynamics in the tropics," Land Use Policy, Elsevier, vol. 153(C).
    16. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    17. Maysoon A A Osman & Elfatih M Abdel-Rahman & Joshua Orungo Onono & Lydia A Olaka & Muna M Elhag & Marian Adan & Henri E Z Tonnang, 2023. "Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-28, July.
    18. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    19. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    20. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61956-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.