IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30731-8.html
   My bibliography  Save this article

The delusive accuracy of global irrigation water withdrawal estimates

Author

Listed:
  • Arnald Puy

    (Princeton University
    University of Bergen)

  • Razi Sheikholeslami

    (University of Oxford
    Sharif University of Technology)

  • Hoshin V. Gupta

    (University of Arizona)

  • Jim W. Hall

    (University of Oxford)

  • Bruce Lankford

    (University of East Anglia)

  • Samuele Lo Piano

    (University of Reading)

  • Jonas Meier

    (German Remote Sensing Data Center (DFD))

  • Florian Pappenberger

    (European Centre for Medium-Range Weather Forecasts)

  • Amilcare Porporato

    (Princeton University)

  • Giulia Vico

    (Swedish University of Agricultural Sciences)

  • Andrea Saltelli

    (University of Bergen
    UPF Barcelona School of Management)

Abstract

Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.

Suggested Citation

  • Arnald Puy & Razi Sheikholeslami & Hoshin V. Gupta & Jim W. Hall & Bruce Lankford & Samuele Lo Piano & Jonas Meier & Florian Pappenberger & Amilcare Porporato & Giulia Vico & Andrea Saltelli, 2022. "The delusive accuracy of global irrigation water withdrawal estimates," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30731-8
    DOI: 10.1038/s41467-022-30731-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30731-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30731-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnald Puy & Emanuele Borgonovo & Samuele Lo Piano & Simon A. Levin & Andrea Saltelli, 2021. "Irrigated areas drive irrigation water withdrawals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Wendy S. Parker, 2013. "Ensemble modeling, uncertainty and robust predictions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(3), pages 213-223, May.
    3. Andrea Saltelli & Gabriele Bammer & Isabelle Bruno & Erica Charters & Monica Di Fiore & Emmanuel Didier & Wendy Nelson Espeland & John Kay & Samuele Lo Piano & Deborah Mayo & Roger Pielke Jr & Tommaso, 2020. "Five ways to ensure that models serve society: a manifesto," Nature, Nature, vol. 582(7813), pages 482-484, June.
    4. Boelens, Rutgerd & Vos, Jeroen, 2012. "The danger of naturalizing water policy concepts: Water productivity and efficiency discourses from field irrigation to virtual water trade," Agricultural Water Management, Elsevier, vol. 108(C), pages 16-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ben Stewart-Koster & Stuart E. Bunn & Pamela Green & Christopher Ndehedehe & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Fabrice DeClerck & Kristie L. Ebi & Christopher Gordon & Joyee, 2024. "Living within the safe and just Earth system boundaries for blue water," Nature Sustainability, Nature, vol. 7(1), pages 53-63, January.
    3. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    3. Muhammad Umar Hayyat & Rab Nawaz & Zafar Siddiq & Muhammad Bilal Shakoor & Maira Mushtaq & Sajid Rashid Ahmad & Shafaqat Ali & Afzal Hussain & Muhammad Atif Irshad & Abdulaziz Abdullah Alsahli & Moham, 2021. "Investigation of Lithium Application and Effect of Organic Matter on Soil Health," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    4. Jeroen Vos & Rutgerd Boelens, 2014. "Sustainability Standards and the Water Question," Development and Change, International Institute of Social Studies, vol. 45(2), pages 205-230, March.
    5. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    6. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    7. Anja Bauer & Leo Capari & Daniela Fuchs & Titus Udrea, 2023. "Diversification, integration, and opening: developments in modelling for policy," Science and Public Policy, Oxford University Press, vol. 50(6), pages 977-987.
    8. Sangha, Laljeet & Shortridge, Julie, 2023. "Quantification of unreported water use for supplemental crop irrigation in humid climates using publicly available agricultural data," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Rutger Dankers & Zbigniew W. Kundzewicz, 2020. "Grappling with uncertainties in physical climate impact projections of water resources," Climatic Change, Springer, vol. 163(3), pages 1379-1397, December.
    10. Jessica Weinkle, 2022. "An evaluation of North Carolina science advice on COVID-19 pandemic response," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-16, December.
    11. McDonald, David A., 2016. "To corporatize or not to corporatize (and if so, how?)," Utilities Policy, Elsevier, vol. 40(C), pages 107-114.
    12. Alexandra M. Schmidt & Marco A. Rodríguez, 2022. "Discussion on “A combined estimate of global temperature”," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    13. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    14. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    15. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Charles Sims & Sarah E. Null & Josue Medellin-Azuara & Augustina Odame, 2021. "Hurry Up Or Wait: Are Private Investments In Climate Change Adaptation Delayed?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-36, November.
    17. Simon Robertson, 2021. "Transparency, trust, and integrated assessment models: An ethical consideration for the Intergovernmental Panel on Climate Change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    18. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    20. Esha Shah & Janwillem Liebrand & Jeroen Vos & Gert Jan Veldwisch & Rutgerd Boelens, 2018. "The UN World Water Development Report 2016, Water and Jobs: A Critical Review," Development and Change, International Institute of Social Studies, vol. 49(2), pages 678-691, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30731-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.