IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i6d10.1038_s41558-022-01379-5.html
   My bibliography  Save this article

Renewable energy certificates threaten the integrity of corporate science-based targets

Author

Listed:
  • Anders Bjørn

    (Concordia University
    Concordia University
    Concordia University)

  • Shannon M. Lloyd

    (Concordia University
    Concordia University)

  • Matthew Brander

    (University of Edinburgh Business School)

  • H. Damon Matthews

    (Concordia University
    Concordia University)

Abstract

Current greenhouse gas accounting standards allow companies to use renewable energy certificates (RECs) to report reductions in emissions from purchased electricity (scope 2) as progress towards meeting their science-based targets. However, previous analyses suggest that corporate REC purchases are unlikely to lead to additional renewable energy production. Here we show that the widespread use of RECs by companies with science-based targets has led to an inflated estimate of the effectiveness of mitigation efforts. When removing the emission reductions claimed through RECs, companies’ combined 2015–2019 scope 2 emission trajectories are no longer aligned with the 1.5 °C goal, and only barely with the well below 2 °C goal of the Paris Agreement. If this trend continues, 42% of committed scope 2 emission reductions will not result in real-world mitigation. Our findings suggest a need to revise accounting guidelines to require companies to report only real emission reductions as progress towards meeting their science-based targets.

Suggested Citation

  • Anders Bjørn & Shannon M. Lloyd & Matthew Brander & H. Damon Matthews, 2022. "Renewable energy certificates threaten the integrity of corporate science-based targets," Nature Climate Change, Nature, vol. 12(6), pages 539-546, June.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:6:d:10.1038_s41558-022-01379-5
    DOI: 10.1038/s41558-022-01379-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01379-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01379-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Derek D. & Sueyoshi, Toshiyuki, 2018. "Climate change mitigation targets set by global firms: Overview and implications for renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 386-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Ignacio Iba~nez & Alexander Freier, 2023. "Don't Trust, Verify: Towards a Framework for the Greening of Bitcoin," Papers 2305.01815, arXiv.org.
    2. Maida Hadziosmanovic & Shannon M. Lloyd & Anders Bjørn & Raymond L. Paquin & Nadine Mengis & H. Damon Matthews, 2022. "Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious corporate emissions targets and long‐term mitigation pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1747-1759, October.
    3. Hechelmann, Ron-Hendrik & Paris, Aaron & Buchenau, Nadja & Ebersold, Felix, 2023. "Decarbonisation strategies for manufacturing: A technical and economic comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Li, Peixian & Ng, Jeremy & Lu, Yujie, 2022. "Accelerating the adoption of renewable energy certificate: Insights from a survey of corporate renewable procurement in Singapore," Renewable Energy, Elsevier, vol. 199(C), pages 1272-1282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Hao Chang & Shih-Fang Lo, 2022. "Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Maia, Rodrigo Gomes Távora & Garcia, Katia Cristina, 2023. "What they say, what they do and how they do it: An evaluation of the energy transition and GHG emissions of electricity companies," Energy Policy, Elsevier, vol. 174(C).
    3. Matthew P. Johnson & Theresa S. Rötzel & Brigitte Frank, 2023. "Beyond conventional corporate responses to climate change towards deep decarbonization: a systematic literature review," Management Review Quarterly, Springer, vol. 73(2), pages 921-954, June.
    4. Gencer, Busra & van Ackere, Ann, 2021. "Achieving long-term renewable energy goals: Do intermediate targets matter?," Utilities Policy, Elsevier, vol. 71(C).
    5. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2022. "External carbon costs and internal carbon pricing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Praene, Jean Philippe & Payet, Mahéva & Bénard-Sora, Fiona, 2018. "Sustainable transition in small island developing states: Assessing the current situation," Utilities Policy, Elsevier, vol. 54(C), pages 86-91.
    8. Johnsson, Filip & Karlsson, Ida & Rootzén, Johan & Ahlbäck, Anders & Gustavsson, Mathias, 2020. "The framing of a sustainable development goals assessment in decarbonizing the construction industry – Avoiding “Greenwashing”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Olga Orynycz & Karol Tucki & Miron Prystasz, 2020. "Implementation of Lean Management as a Tool for Decrease of Energy Consumption and CO 2 Emissions in the Fast Food Restaurant," Energies, MDPI, vol. 13(5), pages 1-26, March.
    10. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    11. T. M. I. Mahlia & H. Syaheed & A. E. Pg Abas & F. Kusumo & A. H. Shamsuddin & Hwai Chyuan Ong & M. R. Bilad, 2019. "Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances," Energies, MDPI, vol. 12(15), pages 1-19, July.
    12. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Lim, Hankwon, 2021. "Which water electrolysis technology is appropriate?: Critical insights of potential water electrolysis for green ammonia production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Zhikai Hu & Zhumei Luo & Na Luo & Xiaoxv Zhang & Haocheng Chao & Linsheng Dai, 2023. "Optimizing Water-Light Complementary Systems for the Complex Terrain of the Southwestern China Plateau Region: A Two-Layer Model Approach," Sustainability, MDPI, vol. 16(1), pages 1-29, December.
    14. Ladislav Pilař & Lucie Kvasničková Stanislavská & Jana Pitrová & Igor Krejčí & Ivana Tichá & Martina Chalupová, 2019. "Twitter Analysis of Global Communication in the Field of Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    15. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    16. Hua Liu & Weijun Wang & Shuai Tang & Longbo Mao & Hongju Mi & Guoping Zhang & Jun Liu, 2019. "Reliability Assessment of Water Hydraulic-Drive Wave-Energy Converters," Energies, MDPI, vol. 12(21), pages 1-21, November.
    17. Mihaela Simionescu & Wadim Strielkowski & Manuela Tvaronavičienė, 2020. "Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries," Energies, MDPI, vol. 13(9), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:6:d:10.1038_s41558-022-01379-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.