IDEAS home Printed from https://ideas.repec.org/a/mgs/ijoied/v5y2019i4p25-35.html
   My bibliography  Save this article

Possibilities of Improving Organic Farming in Turkey

Author

Listed:
  • Ismet Boz

    (Department of Agricultural Economics, Ondokuz Mayis University, Samsun, Turkey)

  • Cevahir Kaynakci

    (Department of Agricultural Economics, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey)

Abstract

Although there is no universally accepted definition of organic farming, most of the scientists focus on an economic, social, and environmentally sustainable agricultural production system that prohibits chemicals, livestock feed additives, and growth regulators. Organic farming in a region must provide a sustainable livelihood for farmers, a clean environment for all living organisms, and healthy food items at reasonable prices for consumers. The overall purpose of this study is to examine the current state and potential developments of organic agriculture in Turkey. The paper first reviews the principles of organic agriculture, then gives information about the legislative process and developments of organic agriculture in Turkey. Specific objectives are to examine the legal structure, organic production, marketing of organic products, and strategies to develop organic agriculture in Turkey. Qualitative research methods were applied to accomplish the objectives of this study. For this reason, journal articles, books, websites, state statistics, and official reports were used for data collection. The basic outline of the paper organized considering the overall purpose and specific objectives of the study.

Suggested Citation

  • Ismet Boz & Cevahir Kaynakci, 2019. "Possibilities of Improving Organic Farming in Turkey," International Journal of Innovation and Economic Development, Inovatus Services Ltd., vol. 5(4), pages 25-35, October.
  • Handle: RePEc:mgs:ijoied:v:5:y:2019:i:4:p:25-35
    as

    Download full text from publisher

    File URL: https://researchleap.com/wp-content/uploads/2019/10/2.-Possibilities-of-Improving-Organic-Farming.pdf
    Download Restriction: no

    File URL: https://researchleap.com/possibilities-improving-organic-farming-turkey/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabani Ndzinge, 2019. "Corporate Governance and Auditor Independence in Small Economies," International Journal of Innovation and Economic Development, Inovatus Services Ltd., vol. 5(4), pages 36-44, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    2. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    3. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    4. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    5. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    6. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    7. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    8. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    9. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    10. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    11. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    12. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    13. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    14. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    15. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    16. Mariarosaria Agostino, 2016. "Organic Agriculture, Greenhouse Gas Emissions and Environmental Efficiency: An Empirical Study on OECD Countries," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(11), pages 1-78, November.
    17. R Chitra & N L Balasudarsun & M Sathish & R Jagajeevan, 2023. "Supply chain modelling in organic farming for sustainable profitability," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(6), pages 255-266.
    18. Takamitsu Kai & Dinesh Adhikari, 2021. "Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition," Agriculture, MDPI, vol. 11(4), pages 1-10, April.
    19. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    20. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).

    More about this item

    Keywords

    Organic farming; Organic agriculture; Conventional agriculture; Organic products;
    All these keywords.

    JEL classification:

    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mgs:ijoied:v:5:y:2019:i:4:p:25-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bojan Obrenovic (email available below). General contact details of provider: https://researchleap.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.