IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i5d10.1007_s11116-021-10210-7.html
   My bibliography  Save this article

Easing or tightening control strategies: determination of COVID-19 parameters for an agent-based model

Author

Listed:
  • Ali Najmi

    (The University of New South Wales)

  • Sahar Nazari

    (Macquarie University
    University of New South Wales)

  • Farshid Safarighouzhdi

    (The University of New South Wales)

  • Eric J. Miller

    (University of Toronto)

  • Raina MacIntyre

    (Arizona State University College of Health Solutions
    Kirby Institute, The University of New South Wales)

  • Taha H. Rashidi

    (The University of New South Wales)

Abstract

Some agent-based models have been developed to estimate the spread progression of coronavirus disease 2019 (COVID-19) and to evaluate strategies aimed to control the outbreak of the infectious disease. Nonetheless, COVID-19 parameter estimation methods are limited to observational epidemiologic studies which are essentially aggregated models. We propose a mathematical structure to determine parameters of agent-based models accounting for the mutual effects of parameters. We then use the agent-based model to assess the extent to which different control strategies can intervene the transmission of COVID-19. Easing social distancing restrictions, opening businesses, speed of enforcing control strategies, quarantining family members of isolated cases on the disease progression and encouraging the use of facemask are the strategies assessed in this study. We estimate the social distancing compliance level in Sydney greater metropolitan area and then elaborate the consequences of moderating the compliance level in the disease suppression. We also show that social distancing and facemask usage are complementary and discuss their interactive effects in detail.

Suggested Citation

  • Ali Najmi & Sahar Nazari & Farshid Safarighouzhdi & Eric J. Miller & Raina MacIntyre & Taha H. Rashidi, 2022. "Easing or tightening control strategies: determination of COVID-19 parameters for an agent-based model," Transportation, Springer, vol. 49(5), pages 1265-1293, October.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:5:d:10.1007_s11116-021-10210-7
    DOI: 10.1007/s11116-021-10210-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10210-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10210-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Najmi & Sahar Nazari & Farshid Safarighouzhdi & C Raina MacIntyre & Eric J Miller & Taha H. Rashidi, 2021. "Facemask and social distancing, pillars of opening up economies," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-13, April.
    2. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    3. Ali Najmi & Taha H. Rashidi & Eric J. Miller, 2019. "A novel approach for systematically calibrating transport planning model systems," Transportation, Springer, vol. 46(5), pages 1915-1950, October.
    4. Ali Najmi & Taha H. Rashidi & James Vaughan & Eric J. Miller, 2020. "Calibration of large-scale transport planning models: a structured approach," Transportation, Springer, vol. 47(4), pages 1867-1905, August.
    5. Roorda, Matthew J. & Carrasco, Juan A. & Miller, Eric J., 2009. "An integrated model of vehicle transactions, activity scheduling and mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 217-229, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    5. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    6. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Ben Clark & Kiron Chatterjee & Steve Melia, 2016. "Changes in level of household car ownership: the role of life events and spatial context," Transportation, Springer, vol. 43(4), pages 565-599, July.
    8. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    9. Mati, Sagiru, 2021. "Do as your neighbours do? Assessing the impact of lockdown and reopening on the active COVID-19 cases in Nigeria," Social Science & Medicine, Elsevier, vol. 270(C).
    10. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    13. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    15. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    16. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    17. Chiou, Yu-Chiun & Wen, Chieh-Hua & Tsai, Shih-Hsun & Wang, Wei-Ying, 2009. "Integrated modeling of car/motorcycle ownership, type and usage for estimating energy consumption and emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 665-684, August.
    18. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    19. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    20. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:5:d:10.1007_s11116-021-10210-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.