IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0239175.html
   My bibliography  Save this article

COVID-19 pandemic and Farr’s law: A global comparison and prediction of outbreak acceleration and deceleration rates

Author

Listed:
  • Kevin Pacheco-Barrios
  • Alejandra Cardenas-Rojas
  • Stefano Giannoni-Luza
  • Felipe Fregni

Abstract

The COVID-19 outbreak has forced most of the global population to lock-down and has put in check the health services all over the world. Current predictive models are complex, region-dependent, and might not be generalized to other countries. However, a 150-year old epidemics law promulgated by William Farr might be useful as a simple arithmetical model (percent increase [R1] and acceleration [R2] of new cases and deaths) to provide a first sight of the epidemic behavior and to detect regions with high predicted dynamics. Thus, this study tested Farr’s Law assumptions by modeling COVID-19 data of new cases and deaths. COVID-19 data until April 10, 2020, was extracted from available countries, including income, urban index, and population characteristics. Farr’s law first (R1) and second ratio (R2) were calculated. We constructed epidemic curves and predictive models for the available countries and performed ecological correlation analysis between R1 and R2 with demographic data. We extracted data from 210 countries, and it was possible to estimate the ratios of 170 of them. Around 42·94% of the countries were in an initial acceleration phase, while 23·5% already crossed the peak. We predicted a reduction close to zero with wide confidence intervals for 56 countries until June 10 (high-income countries from Asia and Oceania, with strict political actions). There was a significant association between high R1 of deaths and high urban index. Farr’s law seems to be a useful model to give an overview of COVID-19 pandemic dynamics. The countries with high dynamics are from Africa and Latin America. Thus, this is a call to urgently prioritize actions in those countries to intensify surveillance, to re-allocate resources, and to build healthcare capacities based on multi-nation collaboration to limit onward transmission and to reduce the future impact on these regions in an eventual second wave.

Suggested Citation

  • Kevin Pacheco-Barrios & Alejandra Cardenas-Rojas & Stefano Giannoni-Luza & Felipe Fregni, 2020. "COVID-19 pandemic and Farr’s law: A global comparison and prediction of outbreak acceleration and deceleration rates," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-25, September.
  • Handle: RePEc:plo:pone00:0239175
    DOI: 10.1371/journal.pone.0239175
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239175
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239175&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0239175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    5. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    6. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    8. Mati, Sagiru, 2021. "Do as your neighbours do? Assessing the impact of lockdown and reopening on the active COVID-19 cases in Nigeria," Social Science & Medicine, Elsevier, vol. 270(C).
    9. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    12. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    14. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    15. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    16. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    17. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    18. Marco Gribaudo & Mauro Iacono & Daniele Manini, 2021. "COVID-19 Spatial Diffusion: A Markovian Agent-Based Model," Mathematics, MDPI, vol. 9(5), pages 1-12, February.
    19. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    20. Daniel K Sewell & Aaron Miller & for the CDC MInD-Healthcare Program, 2020. "Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions with an application to COVID-19 in the District of Columbia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.