IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1793-d428492.html
   My bibliography  Save this article

COVID-19 Transmission: Bangladesh Perspective

Author

Listed:
  • Masud M A

    (Department of Mathematics and Physics, North South University, Dhaka-1229, Bangladesh
    Department of Mathematics, Pusan National University, Busan-46241, Korea)

  • Md Hamidul Islam

    (Department of Applied Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh)

  • Khondaker A. Mamun

    (AIMS Lab, Department of CSE, United International University, Dhaka-1212, Bangladesh)

  • Byul Nim Kim

    (Department of Mathematics, Kyungpook National University, Daegu-41566, Korea)

  • Sangil Kim

    (Department of Mathematics, Pusan National University, Busan-46241, Korea)

Abstract

The sudden emergence of the COVID-19 pandemic has tested the strength of the public health system of the most developed nations and created a “new normal”. Many nations are struggling to curb the epidemic in spite of expanding testing facilities. In this study, we consider the case of Bangladesh, and fit a simple compartmental model holding a feature to distinguish between identified infected and infectious with time series data using least square fitting as well as the likelihood approach; prior to which, dynamics of the model were analyzed mathematically and the identifiability of the parameters has also been confirmed. The performance of the likelihood approach was found to be more promising and was used for further analysis. We performed fitting for different lengths of time intervals starting from the beginning of the outbreak, and examined the evolution of the key parameters from Bangladesh’s perspective. In addition, we deduced profile likelihood and 95 % confidence interval for each of the estimated parameters. Our study demonstrates that the parameters defining the infectious and quarantine rates change with time as a consequence of the change in lock-down strategies and expansion of testing facilities. As a result, the value of the basic reproduction number R 0 was shown to be between 1.5 and 12. The analysis reveals that the projected time and amplitude of the peak vary following the change in infectious and quarantine rates obtained through different lock-down strategies and expansion of testing facilities. The identification rate determines whether the observed peak shows the true prevalence. We find that by restricting the spread through quick identification and quarantine, or by implementing lock-down to reduce overall contact rate, the peak could be delayed, and the amplitude of the peak could be reduced. Another novelty of this study is that the model presented here can infer the unidentified COVID cases besides estimating the officially confirmed COVID cases.

Suggested Citation

  • Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1793-:d:428492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    2. Nicolette Meshkat & Christine Er-zhen Kuo & Joseph DiStefano III, 2014. "On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Saifur Rahman Chowdhury & Tachlima Chowdhury Sunna & Shakil Ahmed, 2021. "Telemedicine is an important aspect of healthcare services amid COVID‐19 outbreak: Its barriers in Bangladesh and strategies to overcome," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(1), pages 4-12, January.
    3. Ridwan Islam Sifat, 2021. "COVID-19 and mental health challenges among the hijra people in Bangladesh," International Journal of Social Psychiatry, , vol. 67(8), pages 1072-1073, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    4. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    5. Brototi Biswas & Ketan Das & Debashis Saikia & Pradip Chouhan, 2024. "COVID-19 Hotspot Mapping and Prediction in Aizawl District of Mizoram: a Hotspot and SEIR Model-Based Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 1-26, February.
    6. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Musa Ganaka Kubi & Son-Allah Mallaka Philemon & Olope Ganiu Ibrahim, 2020. "Forecasting the Confirmed Cases of COVID-19 in Selected West African Countries Using ARIMA Model Technique," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 141-144, August.
    8. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    9. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    10. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    11. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Marco Gribaudo & Mauro Iacono & Daniele Manini, 2021. "COVID-19 Spatial Diffusion: A Markovian Agent-Based Model," Mathematics, MDPI, vol. 9(5), pages 1-12, February.
    13. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    14. Mahmoud M. Mansour & Mohammed A. Farsi & Salah M. Mohamed & Enayat M. Abd Elrazik, 2021. "Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    15. Kevin Pacheco-Barrios & Alejandra Cardenas-Rojas & Stefano Giannoni-Luza & Felipe Fregni, 2020. "COVID-19 pandemic and Farr’s law: A global comparison and prediction of outbreak acceleration and deceleration rates," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-25, September.
    16. Daniel Garcia-Vicuña & Laida Esparza & Fermin Mallor, 2022. "Hospital preparedness during epidemics using simulation: the case of COVID-19," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 213-249, March.
    17. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    18. Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    19. Rajnesh Lal & Weidong Huang & Zhenquan Li, 2021. "An application of the ensemble Kalman filter in epidemiological modelling," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-25, August.
    20. Cem Cakmakli & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Papers 2007.02726, arXiv.org, revised Feb 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1793-:d:428492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.