IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v33y2006i6p517-536.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Should we abandon activity type analysis? Redefining activities by their salient attributes

Author

Listed:
  • Sean Doherty

Abstract

This paper poses a challenge and begins a search. The challenge is to reconsider the usefulness of traditional activity types (“work”, “shopping”, etc.) in the understanding and modelling of travel behaviour. The search is for the more salient attributes of activities that may serve to better explain complex travel behaviours—such as activity scheduling and tour formation. In particular, this paper focuses on explicit measures of the spatial, temporal and interpersonal flexibility of activities, along with several traditional attributes (frequency, duration, involved persons, travel time, and location). Data from a recent in-depth week-long activity scheduling survey was used to define and compare these attributes. Results show that considerable variability in the attributes between and within traditional activity groups is evident. This casts considerable uncertainty on assumptions that statically assign levels of spatial, temporal, and interpersonal flexibility to any given activity type. A Principal Components Analysis further revealed eight new distinct clusters of activities that share like attributes. The relative role of each attribute in each component is examined, and subjective interpretations emerged (e.g., “Long and frequent”, “Space and time flexible” “Social networking”). The implications of these results for future model development and research are discussed. Future research should continue to expand the search for salient attributes and link them more directly to decision processes. Copyright Springer Science+Business Media B.V. 2006

Suggested Citation

  • Sean Doherty, 2006. "Should we abandon activity type analysis? Redefining activities by their salient attributes," Transportation, Springer, vol. 33(6), pages 517-536, November.
  • Handle: RePEc:kap:transp:v:33:y:2006:i:6:p:517-536
    DOI: 10.1007/s11116-006-0001-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-006-0001-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-006-0001-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryuichi Kitamura & Cynthia Chen & Ram Pendyala & Ravi Narayanan, 2000. "Micro-simulation of daily activity-travel patterns for travel demand forecasting," Transportation, Springer, vol. 27(1), pages 25-51, February.
    2. Tim Schwanen & Martin Dijst, 2003. "Time windows in workers' activity patterns: Empirical evidence from the Netherlands," Transportation, Springer, vol. 30(3), pages 261-283, August.
    3. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    4. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    5. T. Limanond & D.A. Niemeier & P.L. Mokhtarian, 2005. "Specification of a tour-based neighborhood shopping model," Transportation, Springer, vol. 32(2), pages 105-134, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda Nijland & Theo Arentze & Harry Timmermans, 2014. "Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior," Journal of Geographical Systems, Springer, vol. 16(1), pages 71-87, January.
    2. Ruiz, Tomás & Habib, Khandker Nurul, 2016. "Scheduling decision styles on leisure and social activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 304-317.
    3. Ron Buliung & Matthew Roorda & Tarmo Remmel, 2008. "Exploring spatial variety in patterns of activity-travel behaviour: initial results from the Toronto Travel-Activity Panel Survey (TTAPS)," Transportation, Springer, vol. 35(6), pages 697-722, November.
    4. Dardas, Anastassios Z. & Williams, Allison & Scott, Darren, 2020. "Carer-employees’ travel behaviour: Assisted-transport in time and space," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Shen, Yue & Kwan, Mei-Po & Chai, Yanwei, 2013. "Investigating commuting flexibility with GPS data and 3D geovisualization: a case study of Beijing, China," Journal of Transport Geography, Elsevier, vol. 32(C), pages 1-11.
    6. Shao, Rui & Derudder, Ben & Yang, Yongchun & Witlox, Frank, 2023. "The association between transit accessibility and space-time flexibility of shopping travel: On the moderating role of ICT use," Journal of Transport Geography, Elsevier, vol. 111(C).
    7. Elldér, Erik, 2014. "Residential location and daily travel distances: the influence of trip purpose," Journal of Transport Geography, Elsevier, vol. 34(C), pages 121-130.
    8. Auld, Joshua & Mohammadian, Abolfazl (Kouros) & Doherty, Sean T., 2009. "Modeling activity conflict resolution strategies using scheduling process data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 386-400, May.
    9. Shen, Yue & Chai, Yanwei & Kwan, Mei-Po, 2015. "Space–time fixity and flexibility of daily activities and the built environment: A case study of different types of communities in Beijing suburbs," Journal of Transport Geography, Elsevier, vol. 47(C), pages 90-99.
    10. Sylvie Occelli & Luca Staricco, 2009. "Learning about Urban Mobility: Experiences with a Multiagent-System Model," Environment and Planning B, , vol. 36(5), pages 772-786, October.
    11. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Activity-travel adaptations in response to a tradable driving credits scheme," Transport Policy, Elsevier, vol. 72(C), pages 79-88.
    12. Crawford, Fiona, 2020. "Segmenting travellers based on day-to-day variability in work-related travel behaviour," Journal of Transport Geography, Elsevier, vol. 86(C).
    13. Akar, Gulsah & Clifton, Kelly J. & Doherty, Sean T., 2012. "Redefining activity types: Who participates in which leisure activity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1194-1204.
    14. Yaxuan Zhang & Chunjiang Li & Ying Song & Yanwei Chai & Yingling Fan, 2024. "Personalizing the dichotomy of fixed and flexible activities in everyday life: deriving prism anchors from GPS-enabled survey data," Transportation, Springer, vol. 51(3), pages 1063-1088, June.
    15. Van Eenoo, Eva & Boussauw, Kobe, 2023. "“That's not feasible without a car”: An exploration of car-dependent practices," Transport Policy, Elsevier, vol. 144(C), pages 1-10.
    16. Mattioli, Giulio & Anable, Jillian & Vrotsou, Katerina, 2016. "Car dependent practices: Findings from a sequence pattern mining study of UK time use data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 56-72.
    17. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.
    18. Christa Hubers & Tim Schwanen & Martin Dijst, 2008. "Ict And Temporal Fragmentation Of Activities: An Analytical Framework And Initial Empirical Findings," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 99(5), pages 528-546, December.
    19. Sivaramakrishnan Srinivasan & Chandra Bhat, 2008. "An exploratory analysis of joint-activity participation characteristics using the American time use survey," Transportation, Springer, vol. 35(3), pages 301-327, May.
    20. Langerudi, Mehran Fasihozaman & Javanmardi, Mahmoud & Shabanpour, Ramin & Rashidi, Taha Hossein & Mohammadian, Abolfazl, 2017. "Incorporating in-home activities in ADAPTS activity-based framework: A sequential conditional probability approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 48-60.
    21. Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Doherty & Abolfazl Mohammadian, 2011. "The validity of using activity type to structure tour-based scheduling models," Transportation, Springer, vol. 38(1), pages 45-63, January.
    2. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
    3. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    4. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    5. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
    6. Sottile, Eleonora & Tuveri, Giovanni & Piras, Francesco & Meloni, Italo, 2022. "Modelling commuting tours versus non-commuting tours for university students. A panel data analysis from different contexts," Transport Policy, Elsevier, vol. 118(C), pages 56-67.
    7. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.
    8. Diana Kusumastuti & Els Hannes & Davy Janssens & Geert Wets & Benedict Dellaert, 2010. "Scrutinizing individuals’ leisure-shopping travel decisions to appraise activity-based models of travel demand," Transportation, Springer, vol. 37(4), pages 647-661, July.
    9. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    10. Lee-Gosselin, Martin & Miranda-Moreno, Luis F., 2009. "What is different about urban activities of those with access to ICTs? Some early evidence from Québec, Canada," Journal of Transport Geography, Elsevier, vol. 17(2), pages 104-114.
    11. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    12. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.
    13. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    14. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    15. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    16. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    17. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    18. Ben-Elia, Eran & Alexander, Bayarma & Hubers, Christa & Ettema, Dick, 2014. "Activity fragmentation, ICT and travel: An exploratory Path Analysis of spatiotemporal interrelationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 56-74.
    19. Yang, Zimo & Lian, Defu & Yuan, Nicholas Jing & Xie, Xing & Rui, Yong & Zhou, Tao, 2017. "Indigenization of urban mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 232-243.
    20. Sheila Ferrer & Tomás Ruiz, 2017. "Comparison on travel scheduling between driving and walking trips by habitual car users," Transportation, Springer, vol. 44(1), pages 27-48, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:33:y:2006:i:6:p:517-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.