IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v39y2013i3p207-215.html
   My bibliography  Save this article

Production under uncertainty: a simulation study

Author

Listed:
  • Sriram Shankar

    ()

  • John Quiggin

    ()

Abstract

In this paper we model production technology in a state-contingent framework. Our model analyzes production under uncertainty without being explicit about the nature of producer risk preferences. In our model producers’ risk preferences are captured by the risk-neutral probabilities they assign to the different states of nature. Using a state-general state-contingent specification of technology we show that rational producers who encounter the same stochastic technology can make significantly different production choices. Further, we develop an econometric methodology to estimate the risk-neutral probabilities and the parameters of stochastic technology when there are two states of nature and only one of which is observed. Finally, we simulate data based on our state-general state-contingent specification of technology. Biased estimates of the technology parameters are obtained when we apply conventional ordinary least squares estimator on the simulated data. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Sriram Shankar & John Quiggin, 2013. "Production under uncertainty: a simulation study," Journal of Productivity Analysis, Springer, vol. 39(3), pages 207-215, June.
  • Handle: RePEc:kap:jproda:v:39:y:2013:i:3:p:207-215
    DOI: 10.1007/s11123-012-0281-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-012-0281-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Powell, Alan A. & Gruen, Fred H.G., 1967. "The Estimation Of Production Frontiers: The Australian Livestock/Cereals Complex," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 11(01), June.
    2. Christopher O’Donnell & Robert Chambers & John Quiggin, 2010. "Efficiency analysis in the presence of uncertainty," Journal of Productivity Analysis, Springer, vol. 33(1), pages 1-17, February.
    3. O'Donnell, Christopher J. & Shankar, Sriram, 2009. "Estimating State-Allocable Production Technologies When There are Two States of Nature and State Allocations of Inputs are Unobserved," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 50898, Australian Agricultural and Resource Economics Society.
    4. C. J. O'Donnell & W. E. Griffiths, 2006. "Estimating State-Contingent Production Frontiers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 249-266.
    5. Rasmussen, Svend, 2003. "Criteria for optimal production under uncertainty. The state-contingent approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), December.
    6. Jean-Paul Chavas, 2008. "A Cost Approach to Economic Analysis Under State-Contingent Production Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 435-466.
    7. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Chambers & Teresa Serra & Spiro Stefanou, 2015. "Using ex ante output elicitation to model state-contingent technologies," Journal of Productivity Analysis, Springer, vol. 43(1), pages 75-83, February.
    2. Kota Minegishi, 2016. "Comparison of production risks in the state-contingent framework: application to balanced panel data," Journal of Productivity Analysis, Springer, vol. 46(2), pages 121-138, December.

    More about this item

    Keywords

    CES; Cobb–Douglas; Output-cubical; Risk-neutral; State-allocable; C63; D21; D22; D81; Q10;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:39:y:2013:i:3:p:207-215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.