IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v9y2007i3p267-288.html
   My bibliography  Save this article

Integrating the maximum capture problem into a GIS framework

Author

Listed:
  • Benjamin Spaulding
  • Robert Cromley

Abstract

No abstract is available for this item.

Suggested Citation

  • Benjamin Spaulding & Robert Cromley, 2007. "Integrating the maximum capture problem into a GIS framework," Journal of Geographical Systems, Springer, vol. 9(3), pages 267-288, September.
  • Handle: RePEc:kap:jgeosy:v:9:y:2007:i:3:p:267-288
    DOI: 10.1007/s10109-007-0047-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-007-0047-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-007-0047-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    2. Serra, Daniel & Marianov, Vladimir & ReVelle, Charles, 1992. "The maximum-capture hierarchical location problem," European Journal of Operational Research, Elsevier, vol. 62(3), pages 363-371, November.
    3. Robin Flowerdew & Mick Green & Evangelos Kehris, 1991. "Using Areal Interpolation Methods In Geographic Information Systems," Papers in Regional Science, Wiley Blackwell, vol. 70(3), pages 303-315, July.
    4. Rosa Colomé & Helena Lourenço & Daniel Serra, 2003. "A New Chance-Constrained Maximum Capture Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 121-139, September.
    5. Daniel Serra & Charles Revelle & Ken Rosing, 1999. "Surviving in a competitive spatial market: The threshold capture model," Economics Working Papers 359, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Daniel Serra & Charles Revelle, 1993. "Market capture by two competitors: The pre-emptive location problem," Economics Working Papers 39, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farrow, Andrew & Risinamhodzi, Kumbirai & Zingore, Shamie & Delve, Robert J., 2011. "Spatially targeting the distribution of agricultural input stockists in Malawi," Agricultural Systems, Elsevier, vol. 104(9), pages 694-702.
    2. Patricia Blatnik & Štefan Bojnec, 2023. "Optimal Network of General Hospitals in Slovenia," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
    3. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    2. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "The maximum capture per unit cost location problem," International Journal of Production Economics, Elsevier, vol. 131(2), pages 568-574, June.
    3. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    4. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    5. Francisco Silva & Daniel Serra, 2007. "Incorporating Waiting Time in Competitive Location Models," Networks and Spatial Economics, Springer, vol. 7(1), pages 63-76, March.
    6. Robert Cromley & Dean Hanink, 2008. "Population growth and the development of a central place system," Journal of Geographical Systems, Springer, vol. 10(4), pages 383-405, December.
    7. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    8. Rosa Colomé & Helena Lourenço & Daniel Serra, 2003. "A New Chance-Constrained Maximum Capture Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 121-139, September.
    9. Francisco Silva & Daniel Serra, 2008. "Incorporating waiting time in competitive location models: Formulations and heuristics," Economics Working Papers 1091, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    11. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    12. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    13. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    14. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    15. S Rezapour & R Zanjirani Farahani & T Drezner, 2011. "Strategic design of competing supply chain networks for inelastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1784-1795, October.
    16. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    17. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    18. Marianov, Vladimir & Serra, Daniel, 2001. "Hierarchical location-allocation models for congested systems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 195-208, November.
    19. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    20. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.

    More about this item

    Keywords

    GIS; Location–allocation modeling; Maximum capture problem; C6;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:9:y:2007:i:3:p:267-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.