IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v222y2014i1p175-19510.1007-s10479-013-1445-x.html
   My bibliography  Save this article

Single-facility huff location problems on networks

Author

Listed:
  • Rafael Blanquero
  • Emilio Carrizosa
  • Amaya Nogales-Gómez
  • Frank Plastria

Abstract

Huff location problems have been extensively analyzed within the field of competitive continuous location. In this work, two Huff location models on networks are addressed, by considering that users go directly to the facility or they visit the facility in their way to a destination. Since the problems are multimodal, a branch and bound algorithm is proposed, in which two different bounding strategies, based on Interval Analysis and DC optimization, are used and compared. Computational results are given for the two bounding procedures, showing that problems of rather realistic size can be solved in reasonable time. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
  • Handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:175-195:10.1007/s10479-013-1445-x
    DOI: 10.1007/s10479-013-1445-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1445-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1445-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    2. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    3. Daniel Serra & Charles Revelle & Ken Rosing, 1999. "Surviving in a competitive spatial market: The threshold capture model," Economics Working Papers 359, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    5. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    6. Tammy Drezner & Zvi Drezner, 2004. "Finding the optimal solution to the Huff based competitive location model," Computational Management Science, Springer, vol. 1(2), pages 193-208, July.
    7. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    8. Plastria, Frank, 2001. "Static competitive facility location: An overview of optimisation approaches," European Journal of Operational Research, Elsevier, vol. 129(3), pages 461-470, March.
    9. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    10. Vladimir Marianov & Daniel Serra, 2002. "Location–Allocation of Multiple-Server Service Centers with Constrained Queues or Waiting Times," Annals of Operations Research, Springer, vol. 111(1), pages 35-50, March.
    11. D. R. Shier & P. M. Dearing, 1983. "Optimal Locations for a Class of Nonlinear, Single-Facility Location Problems on a Network," Operations Research, INFORMS, vol. 31(2), pages 292-303, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka & Nogales-Gómez, Amaya, 2016. "p-facility Huff location problem on networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 34-42.
    2. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    3. Boglárka G.-Tóth & Kristóf Kovács, 2016. "Solving a Huff-like Stackelberg location problem on networks," Journal of Global Optimization, Springer, vol. 64(2), pages 233-247, February.
    4. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka, 2016. "Maximal Covering Location Problems on networks with regional demand," Omega, Elsevier, vol. 64(C), pages 77-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    2. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    3. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    4. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    5. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka & Nogales-Gómez, Amaya, 2016. "p-facility Huff location problem on networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 34-42.
    6. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    7. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    8. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    9. Tammy Drezner, 2011. "Cannibalization in a Competitive Environment," International Regional Science Review, , vol. 34(3), pages 306-322, July.
    10. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    11. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2020. "Facility Dependent Distance Decay in Competitive Location," Networks and Spatial Economics, Springer, vol. 20(4), pages 915-934, December.
    12. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    13. Mark-Christoph Körner & Juan Mesa & Federico Perea & Anita Schöbel & Daniel Scholz, 2014. "A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 227-253, April.
    14. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    15. Tammy Drezner & Morton O’Kelly & Zvi Drezner, 2023. "Multipurpose shopping trips and location," Annals of Operations Research, Springer, vol. 321(1), pages 191-208, February.
    16. José Fernández & Blas Pelegrín & Frank Plastria & Boglárka Tóth, 2007. "Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure," Networks and Spatial Economics, Springer, vol. 7(1), pages 19-44, March.
    17. Blanquero, Rafael & Carrizosa, Emilio & Schöbel, Anita & Scholz, Daniel, 2011. "A global optimization procedure for the location of a median line in the three-dimensional space," European Journal of Operational Research, Elsevier, vol. 215(1), pages 14-20, November.
    18. William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
    19. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    20. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:175-195:10.1007/s10479-013-1445-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.