IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v279y2019i1d10.1007_s10479-018-3026-5.html
   My bibliography  Save this article

Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem

Author

Listed:
  • M. Hakan Akyüz

    (Galatasaray University)

  • Temel Öncan

    (Galatasaray University)

  • İ. Kuban Altınel

    (Boğaziçi University)

Abstract

The Multi-commodity Capacitated Multi-facility Weber Problem is concerned with locating I capacitated facilities in the plane in order to satisfy the demands of J customers for K commodities such that the total transportation cost is minimized. This is a multi-commodity extension of the well-known Capacitated Multi-facility Weber Problem and difficult to solve. In this work, we propose two branch-and-bound algorithms for exactly solving this nonconvex optimization problem. One of them considers partitioning of the allocation space while the other one considers partitioning of the location space. We have implemented two lower bounding schemes for both algorithms and tested several branching strategies. The results of an extensive computational study are also included.

Suggested Citation

  • M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
  • Handle: RePEc:spr:annopr:v:279:y:2019:i:1:d:10.1007_s10479-018-3026-5
    DOI: 10.1007/s10479-018-3026-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3026-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3026-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.
    2. P. Hansen & J. Perreur & J.-F. Thisse, 1980. "Technical Note—Location Theory, Dominance, and Convexity: Some Further Results," Operations Research, INFORMS, vol. 28(5), pages 1241-1250, October.
    3. Jein-Shan Chen & Shaohua Pan & Chun-Hsu Ko, 2011. "A continuation approach for the capacitated multi-facility weber problem based on nonlinear SOCP reformulation," Journal of Global Optimization, Springer, vol. 50(4), pages 713-728, August.
    4. J.-F. Thisse & J. E. Ward & R. E. Wendell, 1984. "Some Properties of Location Problems with Block and Round Norms," Operations Research, INFORMS, vol. 32(6), pages 1309-1327, December.
    5. Leon Cooper, 1972. "The Transportation-Location Problem," Operations Research, INFORMS, vol. 20(1), pages 94-108, February.
    6. Zainuddin, Z.M. & Salhi, S., 2007. "A perturbation-based heuristic for the capacitated multisource Weber problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1194-1207, June.
    7. Jack Brimberg & Robert F. Love, 1993. "Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances," Operations Research, INFORMS, vol. 41(6), pages 1153-1163, December.
    8. D. Klingman & A. Napier & J. Stutz, 1974. "NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Science, INFORMS, vol. 20(5), pages 814-821, January.
    9. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    10. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    11. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    12. Durier, Roland & Michelot, Christian, 1985. "Geometrical properties of the Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 20(3), pages 332-343, June.
    13. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    14. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    15. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    16. Richard E. Wendell & Arthur P. Hurter, 1973. "Location Theory, Dominance, and Convexity," Operations Research, INFORMS, vol. 21(1), pages 314-320, February.
    17. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    18. Brimberg, Jack & Drezner, Zvi & Mladenović, Nenad & Salhi, Said, 2014. "A new local search for continuous location problems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 256-265.
    19. Burak Boyaci & İ. Altinel & Necat Aras, 2013. "Approximate solution methods for the capacitated multi-facility Weber problem," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 97-120.
    20. Roland Durier & Christian Michelot, 1994. "On the Set of Optimal Points to the Weber Problem: Further Results," Transportation Science, INFORMS, vol. 28(2), pages 141-149, May.
    21. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    22. Hanif D. Sherali & Cihan H. Tuncbilek, 1992. "A squared‐euclidean distance location‐allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 447-469, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weiwei & Kong, Nan & Wang, Mingzheng & Zhang, Lingling, 2021. "Sustainable multi-commodity capacitated facility location problem with complementarity demand functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Jun Wu & Xin Liu & Yuanyuan Li & Liping Yang & Wenyan Yuan & Yile Ba, 2022. "A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty," Mathematics, MDPI, vol. 10(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    2. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    3. Necati Aras & İ. Kuban Altınel & Metin Orbay, 2007. "New heuristic methods for the capacitated multi‐facility Weber problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 21-32, February.
    4. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    5. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    6. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    8. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    9. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    10. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    11. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    12. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    13. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    14. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    15. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    16. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    17. AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
    18. H. Martini & K.J. Swanepoel & G. Weiss, 2002. "The Fermat–Torricelli Problem in Normed Planes and Spaces," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 283-314, November.
    19. Frank Plastria, 2009. "Asymmetric distances, semidirected networks and majority in Fermat–Weber problems," Annals of Operations Research, Springer, vol. 167(1), pages 121-155, March.
    20. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:279:y:2019:i:1:d:10.1007_s10479-018-3026-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.