IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v41y1993i6p1153-1163.html
   My bibliography  Save this article

Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances

Author

Listed:
  • Jack Brimberg

    (Royal Military College, Kingston, Ontario, Canada)

  • Robert F. Love

    (McMaster University, Hamilton, Ontario, Canada)

Abstract

This paper considers a general form of the single facility minisum location problem (also referred to as the Fermat-Weber problem), where distances are measured by an l p norm. An iterative solution algorithm is given which generalizes the well-known Weiszfeld procedure for Euclidean distances. Global convergence of the algorithm is proven for any value of the parameter p in the closed interval [1, 2], provided an iterate does not coincide with a singular point of the iteration functions. However, for p > 2, the descent property of the algorithm and as a result, global convergence, are no longer guaranteed. These results generalize the work of Kuhn for Euclidean ( p = 2) distances.

Suggested Citation

  • Jack Brimberg & Robert F. Love, 1993. "Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances," Operations Research, INFORMS, vol. 41(6), pages 1153-1163, December.
  • Handle: RePEc:inm:oropre:v:41:y:1993:i:6:p:1153-1163
    DOI: 10.1287/opre.41.6.1153
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.41.6.1153
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.41.6.1153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zvi Drezner, 2009. "On the convergence of the generalized Weiszfeld algorithm," Annals of Operations Research, Springer, vol. 167(1), pages 327-336, March.
    2. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    3. J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
    4. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    5. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    6. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    7. Turkensteen, Marcel & Klose, Andreas, 2012. "Demand dispersion and logistics costs in one-to-many distribution systems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 499-507.
    8. Jiang, Jian-Lin & Yuan, Xiao-Ming, 2008. "A heuristic algorithm for constrained multi-source Weber problem - The variational inequality approach," European Journal of Operational Research, Elsevier, vol. 187(2), pages 357-370, June.
    9. Jack Brimberg & Henrik Juel & Anita Schöbel, 2002. "Linear Facility Location in Three Dimensions---Models and Solution Methods," Operations Research, INFORMS, vol. 50(6), pages 1050-1057, December.
    10. AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
    11. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    12. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    13. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    14. Justo Puerto & Antonio Rodríguez-Chía, 2006. "New models for locating a moving service facility," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 31-51, February.
    15. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:41:y:1993:i:6:p:1153-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.