IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v46y1998i4p548-562.html
   My bibliography  Save this article

Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming

Author

Listed:
  • Pey-Chun Chen

    (AT&T Laboratories, Holmdel, New Jersey)

  • Pierre Hansen

    (GERAD and École des Hautes Études Commerciales, Montréal, Canada)

  • Brigitte Jaumard

    (GERAD and École Polytechnique de Montreál, Montreál, Canada)

  • Hoang Tuy

    (Institute of Mathematics, Hanoi, Vietnam)

Abstract

D.-c. programming is a recent technique of global optimization that allows the solution of problems whose objective function and constraints can be expressed as differences of convex (i.e., d.-c.) functions. Many such problems arise in continuous location theory. The problem first considered is to locate a known number of source facilities to minimize the sum of weighted Euclidean distances between a user's fixed location and the source facility closest to the location of each user. We also apply d.-c. programming to the solution of the conditional Weber problem, an extension of the multisource Weber Problem, in which some facilities are assumed to be already established. In addition, we consider a generalization of Weber's problem, the facility location problem with limited distances, where the effective service distance becomes a constant when the actual distance attains a given value. Computational results are reported for problems with up to 10,000 users and two new facilities, 50 users and three new facilities, 1,000 users, 20 existing facilities and one new facility or 200 users, 10 existing and two new facilities.

Suggested Citation

  • Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
  • Handle: RePEc:inm:oropre:v:46:y:1998:i:4:p:548-562
    DOI: 10.1287/opre.46.4.548
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.46.4.548
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.46.4.548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosing, K. E., 1992. "An optimal method for solving the (generalized) multi-Weber problem," European Journal of Operational Research, Elsevier, vol. 58(3), pages 414-426, May.
    2. Zvi Drezner, 1984. "The Planar Two-Center and Two-Median Problems," Transportation Science, INFORMS, vol. 18(4), pages 351-361, November.
    3. P. Hansen & J. Perreur & J.-F. Thisse, 1980. "Technical Note—Location Theory, Dominance, and Convexity: Some Further Results," Operations Research, INFORMS, vol. 28(5), pages 1241-1250, October.
    4. M. E. Dyer, 1983. "The Complexity of Vertex Enumeration Methods," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 381-402, August.
    5. James E. Falk & Karla R. Hoffman, 1976. "A Successive Underestimation Method for Concave Minimization Problems," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 251-259, August.
    6. Margaret L. Brandeau & Samuel S. Chiu, 1989. "An Overview of Representative Problems in Location Research," Management Science, INFORMS, vol. 35(6), pages 645-674, June.
    7. William Miehle, 1958. "Link-Length Minimization in Networks," Operations Research, INFORMS, vol. 6(2), pages 232-243, April.
    8. Reuven Chen, 1988. "Conditional Minisum and Minimax Location-Allocation Problems in Euclidean Space," Transportation Science, INFORMS, vol. 22(2), pages 157-160, May.
    9. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    10. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    11. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    12. Robert F. Love & Paul D. Dowling, 1989. "Technical Note—A Generalized Bounding Method for Multifacility Location Models," Operations Research, INFORMS, vol. 37(4), pages 653-657, August.
    13. Zvi Drezner & Avram Mehrez & George O. Wesolowsky, 1991. "The Facility Location Problem with Limited Distances," Transportation Science, INFORMS, vol. 25(3), pages 183-187, August.
    14. T. H. Matheiss & David S. Rubin, 1980. "A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 167-185, May.
    15. James E. Falk & Karla L. Hoffman, 1986. "Concave Minimization Via Collapsing Polytopes," Operations Research, INFORMS, vol. 34(6), pages 919-929, December.
    16. J. Ben Rosen & Guo-Liang Xue, 1991. "Computational Comparison of Two Algorithms for the Euclidean Single Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 3(3), pages 207-212, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prahalad Venkateshan & Kamlesh Mathur, 2015. "A Heuristic for the Multisource Weber Problem with Service Level Constraints," Transportation Science, INFORMS, vol. 49(3), pages 472-483, August.
    2. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    3. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
    4. Thomas Jahn & Yaakov S. Kupitz & Horst Martini & Christian Richter, 2015. "Minsum Location Extended to Gauges and to Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 711-746, September.
    5. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    7. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    8. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    9. Huang, Rongbing & Menezes, Mozart B.C. & Kim, Seokjin, 2012. "The impact of cost uncertainty on the location of a distribution center," European Journal of Operational Research, Elsevier, vol. 218(2), pages 401-407.
    10. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    11. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    12. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    13. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    14. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    15. Rafael Blanquero & Emilio Carrizosa & Pierre Hansen, 2009. "Locating Objects in the Plane Using Global Optimization Techniques," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 837-858, November.
    16. Bonneu, Florent & Thomas-Agnan, Christine, 2009. "Spatial point process models for location-allocation problems," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3070-3081, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    2. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    3. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    4. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    5. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    6. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. R. Chen & Y. Handler, 1993. "The conditional p‐center problem in the plane," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 117-127, February.
    8. Prahalad Venkateshan & Kamlesh Mathur, 2015. "A Heuristic for the Multisource Weber Problem with Service Level Constraints," Transportation Science, INFORMS, vol. 49(3), pages 472-483, August.
    9. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    10. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    11. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    12. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    13. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    14. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    15. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    16. Leise Kelli de Oliveira & Isabela Kopperschmidt de Oliveira & João Guilherme da Costa Braga França & Gustavo Wagner Nunes Balieiro & Jean Francisco Cardoso & Tiago Bogo & Diego Bogo & Marco Adriano Li, 2022. "Integrating Freight and Public Transport Terminals Infrastructure by Locating Lockers: Analysing a Feasible Solution for a Medium-Sized Brazilian Cities," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    17. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    18. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    19. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    20. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:46:y:1998:i:4:p:548-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.