IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v66y2019i7p565-581.html
   My bibliography  Save this article

A cover based competitive facility location model with continuous demand

Author

Listed:
  • Tammy Drezner
  • Zvi Drezner
  • Atsuo Suzuki

Abstract

In this paper we propose and solve a competitive facility location model when demand is continuously distributed in an area and each facility attracts customers within a given distance. This distance is a measure of the facility's attractiveness level which may be different for different facilities. The market share captured by each facility is calculated by two numerical integration methods. These approaches can be used for evaluating functional values in other operations research models as well. The single facility location problem is optimally solved by the big triangle small triangle global optimization algorithm and the multiple facility problem is heuristically solved by the Nelder‐Mead algorithm. Extensive computational experiments demonstrate the effectiveness of the solution approaches.

Suggested Citation

  • Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
  • Handle: RePEc:wly:navres:v:66:y:2019:i:7:p:565-581
    DOI: 10.1002/nav.21868
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21868
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    2. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    3. T Drezner & Z Drezner, 2012. "Modelling lost demand in competitive facility location," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 201-206, February.
    4. Leonardi, Giorgio & Tadei, Roberto, 1984. "Random utility demand models and service location," Regional Science and Urban Economics, Elsevier, vol. 14(3), pages 399-431, August.
    5. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    6. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    7. T Drezner & Z Drezner & P Kalczynski, 2012. "Strategic competitive location: improving existing and establishing new facilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(12), pages 1720-1730, December.
    8. Tammy Drezner & Zvi Drezner, 2004. "Finding the optimal solution to the Huff based competitive location model," Computational Management Science, Springer, vol. 1(2), pages 193-208, July.
    9. Richard E. Wendell & Arthur P. Hurter, 1973. "Location Theory, Dominance, and Convexity," Operations Research, INFORMS, vol. 21(1), pages 314-320, February.
    10. Drezner, Zvi, 1982. "Competitive location strategies for two facilities," Regional Science and Urban Economics, Elsevier, vol. 12(4), pages 485-493, November.
    11. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    12. Robert Aboolian & Oded Berman & Dmitry Krass, 2009. "Efficient solution approaches for a discrete multi-facility competitive interaction model," Annals of Operations Research, Springer, vol. 167(1), pages 297-306, March.
    13. Chelouah, Rachid & Siarry, Patrick, 2003. "Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions," European Journal of Operational Research, Elsevier, vol. 148(2), pages 335-348, July.
    14. H. A. Eiselt & Vladimir Marianov & Tammy Drezner, 2015. "Competitive Location Models," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 365-398, Springer.
    15. Suzuki, Atsuo & Drezner, Zvi, 2009. "The minimum equitable radius location problem with continuous demand," European Journal of Operational Research, Elsevier, vol. 195(1), pages 17-30, May.
    16. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    17. Frank A. Fetter, 1924. "The Economic Law of Market Areas," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 38(3), pages 520-529.
    18. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    2. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    3. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2020. "Facility Dependent Distance Decay in Competitive Location," Networks and Spatial Economics, Springer, vol. 20(4), pages 915-934, December.
    4. Tammy Drezner & Morton O’Kelly & Zvi Drezner, 2023. "Multipurpose shopping trips and location," Annals of Operations Research, Springer, vol. 321(1), pages 191-208, February.
    5. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    6. Zvi Drezner & Dawit Zerom, 2024. "A refinement of the gravity model for competitive facility location," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    7. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    8. H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
    9. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    10. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    11. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    12. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    13. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    14. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    15. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2023. "The Obnoxious Competitive Facility Location Model," Networks and Spatial Economics, Springer, vol. 23(4), pages 885-903, December.
    16. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    17. Rezapour, Shabnam & Farahani, Reza Zanjirani & Dullaert, Wout & De Borger, Bruno, 2014. "Designing a new supply chain for competition against an existing supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 124-140.
    18. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    19. Thomas Byrne & Sándor P. Fekete & Jörg Kalcsics & Linda Kleist, 2023. "Competitive location problems: balanced facility location and the One-Round Manhattan Voronoi Game," Annals of Operations Research, Springer, vol. 321(1), pages 79-101, February.
    20. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:66:y:2019:i:7:p:565-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.