IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v20y2017i3d10.1007_s10729-016-9356-4.html
   My bibliography  Save this article

Due time driven surgery scheduling

Author

Listed:
  • Michael Samudra

    (Faculty of Economics and Business)

  • Erik Demeulemeester

    (Faculty of Economics and Business)

  • Brecht Cardoen

    (Vlerick Business School)

  • Nancy Vansteenkiste

    (University Hospital Leuven)

  • Frank E. Rademakers

    (University Hospital Leuven)

Abstract

In many hospitals there are patients who receive surgery later than what is medically indicated. In one of Europe’s largest hospitals, the University Hospital Leuven, this is the case for approximately every third patient. Serving patients late cannot always be avoided as a highly utilized OR department will sometimes suffer capacity shortage, occasionally leading to unavoidable delays in patient care. Nevertheless, serving patients late is a problem as it exposes them to an increased health risk and hence should be avoided whenever possible. In order to improve the current situation, the delay in patient scheduling had to be quantified and the responsible mechanism, the scheduling process, had to be better understood. Drawing from this understanding, we implemented and tested realistic patient scheduling methods in a discrete event simulation model. We found that it is important to model non-elective arrivals and to include elective rescheduling decisions made on surgery day itself. Rescheduling ensures that OR related performance measures, such as overtime, will only loosely depend on the chosen patient scheduling method. We also found that capacity considerations should guide actions performed before the surgery day such as patient scheduling and patient replanning. This is the case as those scheduling strategies that ensure that OR capacity is efficiently used will also result in a high number of patients served within their medically indicated time limit. An efficient use of OR capacity can be achieved, for instance, by serving patients first come, first served. As applying first come, first served might not always be possible in a real setting, we found it is important to allow for patient replanning.

Suggested Citation

  • Michael Samudra & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2017. "Due time driven surgery scheduling," Health Care Management Science, Springer, vol. 20(3), pages 326-352, September.
  • Handle: RePEc:kap:hcarem:v:20:y:2017:i:3:d:10.1007_s10729-016-9356-4
    DOI: 10.1007/s10729-016-9356-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-016-9356-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-016-9356-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angela Testi & Elena Tanfani & Giancarlo Torre, 2007. "A three-phase approach for operating theatre schedules," Health Care Management Science, Springer, vol. 10(2), pages 163-172, June.
    2. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    3. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    4. Adan, Ivo & Bekkers, Jos & Dellaert, Nico & Jeunet, Jully & Vissers, Jan, 2011. "Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources," European Journal of Operational Research, Elsevier, vol. 213(1), pages 290-308, August.
    5. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    6. Lamiri, Mehdi & Xie, Xiaolan & Dolgui, Alexandre & Grimaud, Frederic, 2008. "A stochastic model for operating room planning with elective and emergency demand for surgery," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1026-1037, March.
    7. Persson, Marie & Persson, Jan A., 2009. "Health economic modeling to support surgery management at a Swedish hospital," Omega, Elsevier, vol. 37(4), pages 853-863, August.
    8. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    9. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    10. Sebastian Rachuba & Brigitte Werners, 2014. "A robust approach for scheduling in hospitals using multiple objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(4), pages 546-556, April.
    11. Fei, Hongying & Meskens, Nadine & Combes, Catherine & Chu, Chengbin, 2009. "The endoscopy scheduling problem: A case study with two specialised operating rooms," International Journal of Production Economics, Elsevier, vol. 120(2), pages 452-462, August.
    12. Yasin Gocgun & Martin Puterman, 2014. "Dynamic scheduling with due dates and time windows: an application to chemotherapy patient appointment booking," Health Care Management Science, Springer, vol. 17(1), pages 60-76, March.
    13. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    14. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arne Schulz, 2023. "The balanced maximally diverse grouping problem with integer attribute values," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
    2. Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    3. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    4. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
    5. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    6. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    7. Nickolas K. Freeman & Sharif H. Melouk & John Mittenthal, 2016. "A Scenario-Based Approach for Operating Theater Scheduling Under Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 245-261, May.
    8. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    9. Freeman, Nickolas & Zhao, Ming & Melouk, Sharif, 2018. "An iterative approach for case mix planning under uncertainty," Omega, Elsevier, vol. 76(C), pages 160-173.
    10. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    11. repec:ipg:wpaper:14 is not listed on IDEAS
    12. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    13. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    14. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    15. repec:ipg:wpaper:201414 is not listed on IDEAS
    16. Nico Dellaert & Jully Jeunet, 2013. "Pareto optimal strategies for improved operational plans of elective patients under multiple constrained resources," Working Papers 2013-14, Department of Research, Ipag Business School.
    17. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    18. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    19. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    20. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    21. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    22. Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
    23. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:20:y:2017:i:3:d:10.1007_s10729-016-9356-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.