IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v213y2011i1p290-308.html
   My bibliography  Save this article

Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources

Author

Listed:
  • Adan, Ivo
  • Bekkers, Jos
  • Dellaert, Nico
  • Jeunet, Jully
  • Vissers, Jan

Abstract

This paper develops a two-stage planning procedure for master planning of elective and emergency patients while allocating at best the available hospital resources. Four types of resources are considered: operating theatre, beds in the medium and in the intensive care units, and nursing hours in the intensive care unit. A tactical plan is obtained by minimizing the deviations of the resources consumption to the target levels of resources utilization, following a goal programming approach. The MIP formulation to get this tactical plan is specifically designed to account for emergency care since it allows for the reservation of some capacity for emergency patients and possible capacity excess. To deal with the deviation between actually arriving elective patients and the average number of patients on which the tactical plan is based, we consider the possibility of planning a higher number of patients than the average to create operating slots in the tactical plan (slack planning). These operating slots are then filled in the operational plan following several flexibility rules. We consider three options for slack planning that lead to three different tactical plans on which we apply three flexibility rules to get finally nine alternative weekly schedules of elective patients. We then develop an algorithm to modify this schedule on a daily basis so as to account for emergency patients' arrivals. Scheduled elective patients may be cancelled and emergency patients may be sent to other hospitals. Cancellation rules for both types of patients rely on the possibility to exceed the available capacities. Several performance indicators are defined to assess patient service and hospital efficiency. Simulation results show a trade-off between hospital efficiency and patient service.

Suggested Citation

  • Adan, Ivo & Bekkers, Jos & Dellaert, Nico & Jeunet, Jully & Vissers, Jan, 2011. "Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources," European Journal of Operational Research, Elsevier, vol. 213(1), pages 290-308, August.
  • Handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:290-308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00180-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Adan & Jos Bekkers & Nico Dellaert & Jan Vissers & Xiaoting Yu, 2009. "Patient mix optimisation and stochastic resource requirements: A case study in cardiothoracic surgery planning," Health Care Management Science, Springer, vol. 12(2), pages 129-141, June.
    2. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    3. Oddoye, J.P. & Jones, D.F. & Tamiz, M. & Schmidt, P., 2009. "Combining simulation and goal programming for healthcare planning in a medical assessment unit," European Journal of Operational Research, Elsevier, vol. 193(1), pages 250-261, February.
    4. Lamiri, Mehdi & Xie, Xiaolan & Dolgui, Alexandre & Grimaud, Frederic, 2008. "A stochastic model for operating room planning with elective and emergency demand for surgery," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1026-1037, March.
    5. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    6. Ridge, J. C. & Jones, S. K. & Nielsen, M. S. & Shahani, A. K., 1998. "Capacity planning for intensive care units," European Journal of Operational Research, Elsevier, vol. 105(2), pages 346-355, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    2. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    3. Arne Schulz, 2023. "The balanced maximally diverse grouping problem with integer attribute values," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
    4. Ana Batista & Jorge Vera & David Pozo, 2020. "Multi-objective admission planning problem: a two-stage stochastic approach," Health Care Management Science, Springer, vol. 23(1), pages 51-65, March.
    5. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    6. Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
    7. ShuJie Liao & Haiting Tu & Cheng Hu & Wulin Pan & Jianwu Xiong & Dongyang Yu & Lei Jing & Wei Pan, 2019. "Fuzzy multi-objective medical service organization selection model considering limited resources and stochastic demand in emergency management," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    8. Bovim, Thomas Reiten & Christiansen, Marielle & Gullhav, Anders N. & Range, Troels Martin & Hellemo, Lars, 2020. "Stochastic master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 285(2), pages 695-711.
    9. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    10. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    11. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    12. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    13. Michael Samudra & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2017. "Due time driven surgery scheduling," Health Care Management Science, Springer, vol. 20(3), pages 326-352, September.
    14. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    15. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
    16. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    17. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    18. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    19. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    20. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    3. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    4. repec:ipg:wpaper:201414 is not listed on IDEAS
    5. H. Romero & N. Dellaert & S. Geer & M. Frunt & M. Jansen-Vullers & G. Krekels, 2013. "Admission and capacity planning for the implementation of one-stop-shop in skin cancer treatment using simulation-based optimization," Health Care Management Science, Springer, vol. 16(1), pages 75-86, March.
    6. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    7. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    8. repec:ipg:wpaper:14 is not listed on IDEAS
    9. Nico Dellaert & Jully Jeunet, 2013. "Pareto optimal strategies for improved operational plans of elective patients under multiple constrained resources," Working Papers 2013-14, Department of Research, Ipag Business School.
    10. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    11. Xiangyong Li & N. Rafaliya & M. Fazle Baki & Ben A. Chaouch, 2017. "Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming," Health Care Management Science, Springer, vol. 20(1), pages 33-54, March.
    12. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    13. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    14. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    15. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    16. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    17. Dellaert, Nico & Jeunet, Jully & Mincsovics, Gergely, 2011. "Budget allocation for permanent and contingent capacity under stochastic demand," International Journal of Production Economics, Elsevier, vol. 131(1), pages 128-138, May.
    18. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    19. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    20. Mohammad Mahdi Nasiri & Farzaneh Shakouhi & Fariborz Jolai, 2019. "A fuzzy robust stochastic mathematical programming approach for multi-objective scheduling of the surgical cases," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 890-910, September.
    21. Josephine Varney & Nigel Bean & Mark Mackay, 2019. "The self-regulating nature of occupancy in ICUs: stochastic homoeostasis," Health Care Management Science, Springer, vol. 22(4), pages 615-634, December.
    22. Valdmanis, Vivian & Bernet, Patrick & Moises, James, 2010. "Hospital capacity, capability, and emergency preparedness," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1628-1634, December.
    23. Narges Hosseini & Kevin Taaffe, 2015. "Allocating operating room block time using historical caseload variability," Health Care Management Science, Springer, vol. 18(4), pages 419-430, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:290-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.