IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i4d10.1007_s10729-022-09598-0.html
   My bibliography  Save this article

On the use of partitioning for scheduling of surgeries in the inpatient surgical department

Author

Listed:
  • Lien Wang

    (KU Leuven, Faculty of Business and Economics, Department of Decision Sciences and Information Management, Research Centre for Operations Management)

  • Erik Demeulemeester

    (KU Leuven, Faculty of Business and Economics, Department of Decision Sciences and Information Management, Research Centre for Operations Management)

  • Nancy Vansteenkiste

    (University Hospitals Leuven, Faculty of Medicine)

  • Frank E. Rademakers

    (University Hospitals Leuven, Faculty of Medicine)

Abstract

In hospitals, the efficient planning of the operating rooms (ORs) is difficult due to the uncertainty inherent to surgical services. This is especially true for the inpatient surgical department where complex and long surgeries are often performed along with surgeries on emergency patients. This paper aims to improve the scheduling of the inpatient department by partitioning the elective surgeries into the more predictable surgeries (MPS) group and the less predictable surgeries (LPS) group, based on surgery duration variability, and by scheduling each of the two surgery groups in different ORs. Through a simulation study that comprehensively investigates the impact of the partitioning on different performance measures under various environmental settings, we report important findings and insights. First, partitioning can effectively shorten the waiting times of elective patients for both MPS and LPS groups, but the option should be allowed to reassign patients from the MPS or LPS ORs to the other ORs when needed. Meanwhile, partitioning sometimes slightly increases the elective cancellation rate. Second, the ability to use the available capacity of the ORs as much as possible is key to reducing elective waiting times. Third, partitioning might slightly worsen the waiting times of emergency patients, while the slightly negative impact on emergency patients decreases when the number of ORs is higher. Fourth, the beneficial impact of partitioning on elective patients increases with an increased patient demand. Last, for the settings considered in this study there was no benefit in partitioning the elective patients into more than two groups.

Suggested Citation

  • Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09598-0
    DOI: 10.1007/s10729-022-09598-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09598-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09598-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Hof & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2017. "Case mix planning in hospitals: a review and future agenda," Health Care Management Science, Springer, vol. 20(2), pages 207-220, June.
    2. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    3. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    4. Freeman, Nickolas & Zhao, Ming & Melouk, Sharif, 2018. "An iterative approach for case mix planning under uncertainty," Omega, Elsevier, vol. 76(C), pages 160-173.
    5. Michael Samudra & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2017. "Due time driven surgery scheduling," Health Care Management Science, Springer, vol. 20(3), pages 326-352, September.
    6. Erwin W. Hans & Peter T. Vanberkel, 2012. "Operating Theatre Planning and Scheduling," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 105-130, Springer.
    7. Ward Whitt, 1999. "Partitioning Customers into Service Groups," Management Science, INFORMS, vol. 45(11), pages 1579-1592, November.
    8. Lopatina, Elena & Damani, Zaheed & Bohm, Eric & Noseworthy, Tom W. & Conner-Spady, Barbara & MacKean, Gail & Simpson, Chris S. & Marshall, Deborah A., 2017. "Single-entry models (SEMs) for scheduled services: Towards a roadmap for the implementation of recommended practices," Health Policy, Elsevier, vol. 121(9), pages 963-970.
    9. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    10. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    11. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    12. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    13. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    14. Filippo Visintin & Paola Cappanera & Carlo Banditori, 2016. "Evaluating the impact of flexible practices on the master surgical scheduling process: an empirical analysis," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 182-205, June.
    15. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    16. Nardo J. Borgman & Ingrid M. H. Vliegen & Erwin W. Hans, 2021. "Emergency Operating Room or Not?," International Series in Operations Research & Management Science, in: Maartje E. Zonderland & Richard J. Boucherie & Erwin W. Hans & Nikky Kortbeek (ed.), Handbook of Healthcare Logistics, pages 111-128, Springer.
    17. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    18. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lien & Demeulemeester, Erik & Vansteenkiste, Nancy & Rademakers, Frank E., 2024. "Capacity and surgery partitioning: An approach for improving surgery scheduling in the inpatient surgical department," European Journal of Operational Research, Elsevier, vol. 313(1), pages 112-128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lien & Demeulemeester, Erik & Vansteenkiste, Nancy & Rademakers, Frank E., 2024. "Capacity and surgery partitioning: An approach for improving surgery scheduling in the inpatient surgical department," European Journal of Operational Research, Elsevier, vol. 313(1), pages 112-128.
    2. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    3. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    4. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    5. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    6. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    7. Akbarzadeh, Babak & Maenhout, Broos, 2024. "A study on policy decisions to embed flexibility for reactive recovery in the planning and scheduling process in operating rooms," Omega, Elsevier, vol. 126(C).
    8. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    9. Sebastian McRae & Jens O. Brunner & Jonathan F. Bard, 2020. "Analyzing economies of scale and scope in hospitals by use of case mix planning," Health Care Management Science, Springer, vol. 23(1), pages 80-101, March.
    10. McRae, Sebastian & Brunner, Jens O., 2020. "Assessing the impact of uncertainty and the level of aggregation in case mix planning," Omega, Elsevier, vol. 97(C).
    11. A, Augustin & P, Jouvet & N, Lahrichi & A, Lodi & LM, Rousseau, 2022. "A data-driven approach to include availability of ICU beds in the planning of the operating room," Omega, Elsevier, vol. 109(C).
    12. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    13. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    14. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    15. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    16. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    17. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    18. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    19. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    20. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09598-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.