IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v26y2012i4p469-494.html

Portfolio risk management in a data-rich environment

Author

Listed:
  • Mohammed Bouaddi

  • Abderrahim Taamouti

Abstract

We study risk assessment using an optimal portfolio in which the weights are functions of latent factors and firm-specific characteristics (hereafter, diffusion index portfolio). The factors are used to summarize the information contained in a large set of economic data and thus reflect the state of the economy. First, we evaluate the performance of the diffusion index portfolio and compare it to both that of a portfolio in which the weights depend only on firm-specific characteristics and an equally weighted portfolio. We then use value-at-risk, expected shortfall, and downside probability to investigate whether the weights-modeling approach, which is based on factor analysis, helps reduce market risk. Our empirical results clearly indicate that using economic factors together with firm-specific characteristics helps protect investors against market risk. Copyright Swiss Society for Financial Market Research 2012

Suggested Citation

  • Mohammed Bouaddi & Abderrahim Taamouti, 2012. "Portfolio risk management in a data-rich environment," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(4), pages 469-494, December.
  • Handle: RePEc:kap:fmktpm:v:26:y:2012:i:4:p:469-494
    DOI: 10.1007/s11408-012-0199-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-012-0199-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11408-012-0199-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    2. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    3. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    6. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    7. A. Gregoriou & A. Kontonikas & R. MacDonald & A. Montagnoli, 2009. "Monetary policy shocks and stock returns: evidence from the British market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(4), pages 401-410, December.
    8. Giannone, Domenico & De Mol, Christine & Daubechies, Ingrid & Brodie, Joshua, 2007. "Sparse and Stable Markowitz Portfolios," CEPR Discussion Papers 6474, C.E.P.R. Discussion Papers.
    9. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    10. Ernst Konrad, 2009. "The impact of monetary policy surprises on asset return volatility: the case of Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(2), pages 111-135, June.
    11. Rangvid, Jesper, 2006. "Output and expected returns," Journal of Financial Economics, Elsevier, vol. 81(3), pages 595-624, September.
    12. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    13. Philipp Hildebrand, 2006. "Monetary Policy and Financial Markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(1), pages 7-18, April.
    14. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    15. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    16. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    17. He, Jia & Ng, Lilian K, 1994. "Economic Forces, Fundamental Variables, and Equity Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 599-609, October.
    18. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakeu, Johnson & Bouaddi, Mohammed, 2017. "Empirical evidence of news about future prospects in the risk-pricing of oil assets," Energy Economics, Elsevier, vol. 64(C), pages 458-468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaddi, Mohammed & Taamouti, Abderrahim, 2013. "Portfolio selection in a data-rich environment," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2943-2962.
    2. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
    3. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    6. Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
    7. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    8. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    9. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    10. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Estimation methods in panel data models with observed and unobserved components: a Monte Carlo study," MPRA Paper 26196, University Library of Munich, Germany.
    11. Carlo Altavilla & Raffaella Giacomini & Riccardo Costantini, 2014. "Bond Returns and Market Expectations," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 708-729.
    12. repec:dau:papers:123456789/11663 is not listed on IDEAS
    13. Sung Hoon Choi, 2021. "Feasible Weighted Projected Principal Component Analysis for Factor Models with an Application to Bond Risk Premia," Papers 2108.10250, arXiv.org, revised May 2022.
    14. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    15. Hjalmarsson, Erik & Manchev, Petar, 2012. "Characteristic-based mean-variance portfolio choice," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1392-1401.
    16. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    17. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    18. Terence Tai-Leung Chong & Nasha Li & Lin Zou, 2017. "A New Approach to Modeling Sector Stock Returns in China," Chinese Economy, Taylor & Francis Journals, vol. 50(5), pages 305-322, September.
    19. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    20. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    21. Papadamou, Stephanos & Sidiropoulos, Moïse & Spyromitros, Eleftherios, 2014. "Does central bank transparency affect stock market volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 362-377.
    22. Kontonikas, Alexandros & MacDonald, Ronald & Saggu, Aman, 2013. "Stock market reaction to fed funds rate surprises: State dependence and the financial crisis," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4025-4037.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:26:y:2012:i:4:p:469-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.