IDEAS home Printed from https://ideas.repec.org/a/kap/ecopln/v57y2024i2d10.1007_s10644-024-09603-2.html
   My bibliography  Save this article

Urban–rural income gap and economic sustainability: how does energy transition matters?

Author

Listed:
  • Aihui Lyu

    (Jilin University)

  • Junjiang Li

    (Jilin University)

Abstract

The study aim is to assess the urban–rural income gap nexus with economic sustainability with the mediating role of energy transition. Communities worldwide are accelerating the energy transition and promoting social justice to combat global warming and poverty. Our experiment examined how the multi-dimensional energy transition rate affects the urban–rural income gap in 30 Chinese regions. The article analyzes China's renewable energy performance and creates an index. We next evaluate how the energy transition affects the urban–rural income gap using panel data from all 30 Chinese provinces between 2009 and 2020. China is increasing its energy conversion, according to our research. This research found that energy conversion has been effective but uneven in addressing the urban–rural income divide. Clean to warm and PV-based poverty reduction, the initiative's positive impact on China's urban–rural income inequalities, and the positive and negative effects of transition methods and ecological factors are also measured. Our study on the urban–rural wealth gap in China illuminates global energy transitions.

Suggested Citation

  • Aihui Lyu & Junjiang Li, 2024. "Urban–rural income gap and economic sustainability: how does energy transition matters?," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-27, April.
  • Handle: RePEc:kap:ecopln:v:57:y:2024:i:2:d:10.1007_s10644-024-09603-2
    DOI: 10.1007/s10644-024-09603-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10644-024-09603-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10644-024-09603-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alina Ștefania Chenic & Alin Ioan Cretu & Adrian Burlacu & Nicolae Moroianu & Daniela Vîrjan & Dragos Huru & Mihaela Roberta Stanef-Puica & Vladimir Enachescu, 2022. "Logical Analysis on the Strategy for a Sustainable Transition of the World to Green Energy—2050. Smart Cities and Villages Coupled to Renewable Energy Sources with Low Carbon Footprint," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    2. Jason Chilvers & Rob Bellamy & Helen Pallett & Tom Hargreaves, 2021. "A systemic approach to mapping participation with low-carbon energy transitions," Nature Energy, Nature, vol. 6(3), pages 250-259, March.
    3. Lazar Gitelman & Mikhail Kozhevnikov, 2022. "Energy Transition Manifesto: A Contribution towards the Discourse on the Specifics Amid Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-21, December.
    4. Siyu Chen & Ran Wang & Tingting Wang & Wenxian Zhou, 2022. "The Impact of Student-Teacher Policy Perception on Employment Intentions in Rural Schools for Educational Sustainable Development Based on Push–Pull Theory: An Empirical Study from China," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    5. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    6. Khan, Imran, 2020. "Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Pingkuo, Liu & Huan, Peng, 2022. "What drives the green and low-carbon energy transition in China?: An empirical analysis based on a novel framework," Energy, Elsevier, vol. 239(PE).
    8. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    10. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    11. James Meadowcroft, 2009. "What about the politics? Sustainable development, transition management, and long term energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 323-340, November.
    12. Venkatachalam Anbumozhi & Kaliappa Kalirajan & Fukunari Kimura (ed.), 2018. "Financing for Low-carbon Energy Transition," Springer Books, Springer, number 978-981-10-8582-6, June.
    13. Jason Chilvers & Rob Bellamy & Helen Pallett & Tom Hargreaves, 2021. "Publisher Correction: A systemic approach to mapping participation with low-carbon energy transitions," Nature Energy, Nature, vol. 6(7), pages 764-764, July.
    14. Benjamin K. Sovacool & Steve Griffiths, 2020. "Culture and low-carbon energy transitions," Nature Sustainability, Nature, vol. 3(9), pages 685-693, September.
    15. Matteo Trane & Luisa Marelli & Alice Siragusa & Riccardo Pollo & Patrizia Lombardi, 2023. "Progress by Research to Achieve the Sustainable Development Goals in the EU: A Systematic Literature Review," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mintian He & Shuili Yang, 2024. "Public–private partnerships for energy transition: studying role of economic change and energy restructuring over the time," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-28, April.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    3. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
    4. Park, Seona & Yun, Sun-Jin & Cho, Kongjang, 2022. "Public dialogue as a collaborative planning process for offshore wind energy projects: Implications from a text analysis of a South Korean case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Bingru Liu & Xingtong Pan, 2024. "Green finance, energy transition, and natural resources of real estate sector: driving eco-sustainability and sustainable economic growth," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-23, April.
    6. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    7. Rebecca Wells & Candice Howarth & Lina I. Brand-Correa, 2021. "Are citizen juries and assemblies on climate change driving democratic climate policymaking? An exploration of two case studies in the UK," Climatic Change, Springer, vol. 168(1), pages 1-22, September.
    8. Colvin, R.M. & Przybyszewski, E., 2022. "Local residents' policy preferences in an energy contested region – The Upper Hunter, Australia," Energy Policy, Elsevier, vol. 162(C).
    9. Andrei Forton & Adelin Stirb & Paul Marc, 2023. "Influence of Anti-Stripping Green Additives on Binder Performance," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    10. Yoshino, Naoyuki & Taghizadeh–Hesary, Farhad & Nakahigashi, Masaki, 2019. "Modelling the social funding and spill-over tax for addressing the green energy financing gap," Economic Modelling, Elsevier, vol. 77(C), pages 34-41.
    11. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    13. Giorgia Silvestri & Julia M. Wittmayer & Karlijn Schipper & Robinah Kulabako & Sampson Oduro-Kwarteng & Philip Nyenje & Hans Komakech & Roel Van Raak, 2018. "Transition Management for Improving the Sustainability of WASH Services in Informal Settlements in Sub-Saharan Africa—An Exploration," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    14. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    15. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    16. József Kádár & Martina Pilloni & Tareq Abu Hamed, 2023. "A Survey of Renewable Energy, Climate Change, and Policy Awareness in Israel: The Long Path for Citizen Participation in the National Renewable Energy Transition," Energies, MDPI, vol. 16(5), pages 1-16, February.
    17. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    18. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    19. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    20. Mary Lawhon, 2012. "Contesting power, trust and legitimacy in the South African e-waste transition," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(1), pages 69-86, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:ecopln:v:57:y:2024:i:2:d:10.1007_s10644-024-09603-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.