IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i5d10.1007_s10614-024-10656-8.html
   My bibliography  Save this article

Dynamic Time Warping: Intertemporal Clustering Alignments for Hotel Tourism Demand

Author

Listed:
  • Miguel Ángel Ruiz Reina

    (Universidad de Málaga)

Abstract

The consideration of the study on dynamic cluster flows in international tourists is an aspect that has been scarcely addressed in research despite its importance in economic development. Dynamic Time Warping is the methodology applied to identify alignments of common patterns in hotel demand time series within applied economics. The automatic determination of the number of clusters proposes an optimal number of groups for tourist destinations, and this proposition is confirmed through internal validation. Similarities among time series, including identifying outliers through boxplots, have been identified through the applied methodology. It has been employed for the primary tourist destinations in Spain for 106 international hotel demand time series. The effects of COVID-19 on the tourism sector and temporal similarities have been observed through clustering. The results that have been obtained reveal international tourist market flows that go beyond traditional analyses of seasonality or climatic factors, thus constituting a valuable tool for economic analysis in both direct and indirect markets.

Suggested Citation

  • Miguel Ángel Ruiz Reina, 2025. "Dynamic Time Warping: Intertemporal Clustering Alignments for Hotel Tourism Demand," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2625-2648, May.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10656-8
    DOI: 10.1007/s10614-024-10656-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10656-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10656-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Dynamic time warping; Unsupervised clustering; Hotel tourism demand;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10656-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.