IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v072i08.html
   My bibliography  Save this article

extRemes 2.0: An Extreme Value Analysis Package in R

Author

Listed:
  • Gilleland, Eric
  • Katz, Richard W.

Abstract

This article describes the extreme value analysis (EVA) R package extRemes version 2.0, which is completely redesigned from previous versions. The functions primarily provide utilities for implementing univariate EVA, with a focus on weather and climate applications, including the incorporation of covariates, as well as some functionality for assessing bivariate tail dependence.

Suggested Citation

  • Gilleland, Eric & Katz, Richard W., 2016. "extRemes 2.0: An Extreme Value Analysis Package in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i08).
  • Handle: RePEc:jss:jstsof:v:072:i08
    DOI: http://hdl.handle.net/10.18637/jss.v072.i08
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v072i08/v72i08.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v072i08/extRemes_2.0-8.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v072i08/v72i08.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v072.i08?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karvanen, Juha, 2006. "Estimation of quantile mixtures via L-moments and trimmed L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 947-959, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Wiel, K. & Stoop, L.P. & van Zuijlen, B.R.H. & Blackport, R. & van den Broek, M.A. & Selten, F.M., 2019. "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 261-275.
    2. Moins, Théo & Arbel, Julyan & Girard, Stéphane & Dutfoy, Anne, 2023. "Reparameterization of extreme value framework for improved Bayesian workflow," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    4. Franzke, Christian L.E., 2021. "Towards the development of economic damage functions for weather and climate extremes," Ecological Economics, Elsevier, vol. 189(C).
    5. Luis Fernando Melo‐Velandia & Camilo Andrés Orozco‐Vanegas & Daniel Parra‐Amado, 2022. "Extreme weather events and high Colombian food prices: A non‐stationary extreme value approach," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 21-40, November.
    6. Fengsong Pei & Yi Zhou & Yan Xia, 2021. "Assessing the Impacts of Extreme Precipitation Change on Vegetation Activity," Agriculture, MDPI, vol. 11(6), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    2. Philippe Bernard & Najat El Mekkaoui De Freitas & Bertrand B. Maillet, 2022. "A financial fraud detection indicator for investors: an IDeA," Annals of Operations Research, Springer, vol. 313(2), pages 809-832, June.
    3. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    4. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    5. Darolles, Serge & Gourieroux, Christian & Jasiak, Joann, 2009. "L-performance with an application to hedge funds," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 671-685, September.
    6. Guillaume Bernis & Nicolas Brunel & Antoine Kornprobst & Simone Scotti, 2017. "Stochastic Evolution of Distributions - Applications to CDS indices," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467736, HAL.
    7. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    8. Elena García Bustamante & J. Fidel González Rouco & Jorge Navarro & Etor E. Lucio Eceiza & Cristina Rojas Labanda, 2021. "Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties," Energies, MDPI, vol. 14(21), pages 1-32, October.
    9. Guillaume Bernis & Nicolas Brunel & Antoine Kornprobst & Simone Scotti, 2017. "Stochastic Evolution of Distributions - Applications to CDS indices," Post-Print halshs-01467736, HAL.
    10. Cheng Peng & Stanislav Uryasev, 2023. "Factor Model of Mixtures," Papers 2301.13843, arXiv.org, revised Mar 2023.
    11. Andrea Bastianin, 2020. "Robust measures of skewness and kurtosis for macroeconomic and financial time series," Applied Economics, Taylor & Francis Journals, vol. 52(7), pages 637-670, February.
    12. Di Nardo, E. & Guarino, G. & Senato, D., 2008. "Symbolic computation of moments of sampling distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4909-4922, July.
    13. Karvanen, Juha & Kulathinal, Sangita & Gasbarra, Dario, 2009. "Optimal designs to select individuals for genotyping conditional on observed binary or survival outcomes and non-genetic covariates," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1782-1793, March.
    14. Guillaume Bernis & Nicolas Brunel & Antoine Kornprobst & Simone Scotti, 2017. "Stochastic Evolution of Distributions - Applications to CDS indices," Documents de travail du Centre d'Economie de la Sorbonne 17007, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    16. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    17. Delicado, P. & Goria, M.N., 2008. "A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1661-1673, January.
    18. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    19. Camilo Lillo & Víctor Leiva & Orietta Nicolis & Robert G. Aykroyd, 2018. "L-moments of the Birnbaum–Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(2), pages 187-209, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:072:i08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.