IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v22y1988i1p14-30.html
   My bibliography  Save this article

A Combined Trip Generation, Trip Distribution, Modal Split, and Trip Assignment Model

Author

Listed:
  • K. Nabil Ali Safwat

    (Texas A&M University, College Station, Texas 77843)

  • Thomas L. Magnanti

    (Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Modeling of transportation systems must invariably balance behavioral richness and computational tractability. In this paper, we develop a transportation equilibrium model and an algorithm for the simultaneous prediction of trip generation, trip distribution, modal split, and trip assignment on large-scale networks. The model achieves a practical compromise between behavioral and computational aspects of modeling the problem. It is formulated as an equivalent convex optimization problem, yet it is behaviorally richer than other models that can be cast as equivalent convex programs. Although the model is not as behaviorally rich as the most general equilibrium models, it has computational advantages. The applications reported in this paper of the model to real systems, i.e., the intercity transport network of Egypt and the urban transportation network of Austin, Texas, illustrate the computational attractiveness of the approach. These results indicate that equivalent optimization formulations are not as restrictive as previously thought, and hence, the equivalent convex programming approach for modeling and predicting equilibrium on transportation systems remains a viable and fruitful avenue for future consideration.

Suggested Citation

  • K. Nabil Ali Safwat & Thomas L. Magnanti, 1988. "A Combined Trip Generation, Trip Distribution, Modal Split, and Trip Assignment Model," Transportation Science, INFORMS, vol. 22(1), pages 14-30, February.
  • Handle: RePEc:inm:ortrsc:v:22:y:1988:i:1:p:14-30
    DOI: 10.1287/trsc.22.1.14
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.22.1.14
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.22.1.14?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Nagurney & June Dong, 2002. "Urban Location and Transportation in the Information Age: A Multiclass, Multicriteria Network Equilibrium Perspective," Environment and Planning B, , vol. 29(1), pages 53-74, February.
    2. Zhou, Zhong & Chen, Anthony & Wong, S.C., 2009. "Alternative formulations of a combined trip generation, trip distribution, modal split, and trip assignment model," European Journal of Operational Research, Elsevier, vol. 198(1), pages 129-138, October.
    3. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    4. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    5. Jingni Song & Feng Chen & Qunqi Wu & Weiyu Liu & Feiyang Xue & Kai Du, 2019. "Optimization of Passenger Transportation Corridor Mode Supply Structure in Regional Comprehensive Transport Considering Economic Equilibrium," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    6. Xu, Meng & Chen, Anthony & Gao, Ziyou, 2008. "An improved origin-based algorithm for solving the combined distribution and assignment problem," European Journal of Operational Research, Elsevier, vol. 188(2), pages 354-369, July.
    7. Nicholas S. Caros & Jinhua Zhao, 2022. "Preparing urban mobility for the future of work," Papers 2201.01321, arXiv.org.
    8. Qiang Meng & Hai Yang & Sze-Chun Wong, 2000. "A Combined Land-Use and Transportation Model for Work Trips," Environment and Planning B, , vol. 27(1), pages 93-103, February.
    9. Justin Siegel & Joaquín Cea & José Fernández & Renán Rodriguez & David Boyce, 2006. "Comparisons of Urban Travel Forecasts Prepared with the Sequential Procedure and a Combined Model," Networks and Spatial Economics, Springer, vol. 6(2), pages 135-148, June.
    10. David Boyce, 2007. "Forecasting Travel on Congested Urban Transportation Networks: Review and Prospects for Network Equilibrium Models," Networks and Spatial Economics, Springer, vol. 7(2), pages 99-128, June.
    11. Boyce, David & Mattsson, Lars-Göran, 1999. "Modeling residential location choice in relation to housing location and road tolls on congested urban highway networks," Transportation Research Part B: Methodological, Elsevier, vol. 33(8), pages 581-591, November.
    12. Mohamad K. Hasan & Mohammad Saoud & Raed Al-Husain, 2021. "Supernetwork Representation Formulation of a Multiclass Simultaneous Transportation Equilibrium Model as a Fixed Demand User Equilibrium Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(3), pages 18-33, July.
    13. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    14. Louis Grange & Enrique Fernández & Joaquín Cea & Magdalena Irrazábal, 2010. "Combined Model Calibration and Spatial Aggregation," Networks and Spatial Economics, Springer, vol. 10(4), pages 551-578, December.
    15. Cantarella, Giulio Erberto & Cartenì, Armando & de Luca, Stefano, 2015. "Stochastic equilibrium assignment with variable demand: Theoretical and implementation issues," European Journal of Operational Research, Elsevier, vol. 241(2), pages 330-347.
    16. Nicholson, Alan & Du, Zhen-Ping, 1997. "Degradable transportation systems: An integrated equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 209-223, June.
    17. Taha Rashidi & Abolfazl Mohammadian, 2011. "Household travel attributes transferability analysis: application of a hierarchical rule based approach," Transportation, Springer, vol. 38(4), pages 697-714, July.
    18. Tao Zhang & Yang Yang & Gang Cheng & Minjie Jin, 2020. "A Practical Traffic Assignment Model for Multimodal Transport System Considering Low-Mobility Groups," Mathematics, MDPI, vol. 8(3), pages 1-19, March.
    19. Mohamad Hasan & Hussain Dashti, 2007. "A Multiclass Simultaneous Transportation Equilibrium Model," Networks and Spatial Economics, Springer, vol. 7(3), pages 197-211, September.
    20. Arampatzis, G. & Kiranoudis, C. T. & Scaloubacas, P. & Assimacopoulos, D., 2004. "A GIS-based decision support system for planning urban transportation policies," European Journal of Operational Research, Elsevier, vol. 152(2), pages 465-475, January.
    21. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:22:y:1988:i:1:p:14-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.