IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p351-d328647.html
   My bibliography  Save this article

A Practical Traffic Assignment Model for Multimodal Transport System Considering Low-Mobility Groups

Author

Listed:
  • Tao Zhang

    (School of Traffic and Logistics Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

  • Yang Yang

    (School of Traffic and Logistics Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China)

  • Gang Cheng

    (College of Engineering, Tibet University, Lhasa 850000, China
    College of Transportation, Jilin University, Changchun 130000, China)

  • Minjie Jin

    (School of Traffic and Logistics Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

Abstract

In this study, we created a practical traffic assignment model for a multimodal transport system considering low-mobility groups with the aim of providing the foundation of transportation network design for low-mobility individuals. First, the route choice equilibrium for walking, non-vehicle, and private car modes is described using the logit function, which is formulated as a variational inequality problem considering different low-mobility groups. Then, the practicalities related to travel times at intersections, traffic barricades between different lanes, and fuel fees of private cars are integrated to design a generalized travel cost function. Last, the method of successive weight averages is used to solve the proposed model. The model and its solution are verified based on a real case study of the city of Wenling in China. The sensitivity of adjustment parameters related to travel costs are analyzed, the practicality of the proposed model is explored, and the results of traffic assignment for different low-mobility groups are discussed.

Suggested Citation

  • Tao Zhang & Yang Yang & Gang Cheng & Minjie Jin, 2020. "A Practical Traffic Assignment Model for Multimodal Transport System Considering Low-Mobility Groups," Mathematics, MDPI, vol. 8(3), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:351-:d:328647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    2. Nagurney, Anna & Dong, June, 2002. "A multiclass, multicriteria traffic network equilibrium model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 445-469, June.
    3. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    4. T. Abrahamsson & L. Lundqvist, 1999. "Formulation and Estimation of Combined Network Equilibrium Models with Applications to Stockholm," Transportation Science, INFORMS, vol. 33(1), pages 80-100, February.
    5. Michael Florian, 1977. "A Traffic Equilibrium Model of Travel by Car and Public Transit Modes," Transportation Science, INFORMS, vol. 11(2), pages 166-179, May.
    6. Wong, S. C., 1998. "Multi-commodity traffic assignment by continuum approximation of network flow with variable demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 567-581, November.
    7. Enrique Fernandez & Joaquin de Cea & Michael Florian & Enrique Cabrera, 1994. "Network Equilibrium Models with Combined Modes," Transportation Science, INFORMS, vol. 28(3), pages 182-192, August.
    8. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    9. Bingfeng Si & Xuedong Yan & Hunjun Sun & Xiaobao Yang & Ziyou Gao, 2012. "Travel Demand-Based Assignment Model for Multimodal and Multiuser Transportation System," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-22, December.
    10. Meng Xu & Ziyou Gao, 2009. "Multi-class Multi-modal Network Equilibrium with Regular Choice Behaviors: A General Fixed Point Approach," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 301-325, Springer.
    11. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    12. K. Nabil Ali Safwat & Thomas L. Magnanti, 1988. "A Combined Trip Generation, Trip Distribution, Modal Split, and Trip Assignment Model," Transportation Science, INFORMS, vol. 22(1), pages 14-30, February.
    13. Nagurney, Anna B., 1984. "Comparative tests of multimodal traffic equilibrium methods," Transportation Research Part B: Methodological, Elsevier, vol. 18(6), pages 469-485, December.
    14. Michael Florian & Heinz Spiess, 1983. "On Binary Mode Choice/Assignment Models," Transportation Science, INFORMS, vol. 17(1), pages 32-47, February.
    15. Dial, Robert B., 1979. "A model and algorithm for multicriteria route-mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 311-316, December.
    16. Ferrari, Paolo, 1999. "A model of urban transport management," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 43-61, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Huang & Yang Hu & Xuanyu Zhang, 2022. "Enhancing Model-Based Anticipatory Traffic Signal Control with Metamodeling and Adaptive Optimization," Mathematics, MDPI, vol. 10(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantarella, Giulio Erberto & Cartenì, Armando & de Luca, Stefano, 2015. "Stochastic equilibrium assignment with variable demand: Theoretical and implementation issues," European Journal of Operational Research, Elsevier, vol. 241(2), pages 330-347.
    2. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    3. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    4. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    5. García, Ricardo & Marín, Angel, 2005. "Network equilibrium with combined modes: models and solution algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 223-254, March.
    6. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    7. Seungkyu Ryu, 2021. "Mode Choice Change under Environmental Constraints in the Combined Modal Split and Traffic Assignment Model," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    8. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    9. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    10. Joaquín De Cea & J. Enrique Fernández & Valérie Dekock & Alexandra Soto, 2004. "Solving network equilibrium problems on multimodal urban transportation networks with multiple user classes," Transport Reviews, Taylor & Francis Journals, vol. 25(3), pages 293-317, January.
    11. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    12. David Boyce, 2007. "Forecasting Travel on Congested Urban Transportation Networks: Review and Prospects for Network Equilibrium Models," Networks and Spatial Economics, Springer, vol. 7(2), pages 99-128, June.
    13. Jingni Song & Feng Chen & Qunqi Wu & Weiyu Liu & Feiyang Xue & Kai Du, 2019. "Optimization of Passenger Transportation Corridor Mode Supply Structure in Regional Comprehensive Transport Considering Economic Equilibrium," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    14. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    15. Justin Siegel & Joaquín Cea & José Fernández & Renán Rodriguez & David Boyce, 2006. "Comparisons of Urban Travel Forecasts Prepared with the Sequential Procedure and a Combined Model," Networks and Spatial Economics, Springer, vol. 6(2), pages 135-148, June.
    16. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    17. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    18. Yan-Qun Jiang & S.C. Wong & Peng Zhang & Keechoo Choi, 2017. "Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City," Transportation Science, INFORMS, vol. 51(3), pages 931-945, August.
    19. Meruza Kubentayeva & Demyan Yarmoshik & Mikhail Persiianov & Alexey Kroshnin & Ekaterina Kotliarova & Nazarii Tupitsa & Dmitry Pasechnyuk & Alexander Gasnikov & Vladimir Shvetsov & Leonid Baryshev & A, 2024. "Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints," Computational Management Science, Springer, vol. 21(1), pages 1-33, June.
    20. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:351-:d:328647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.