IDEAS home Printed from
   My bibliography  Save this article

Rank Centrality: Ranking from Pairwise Comparisons


  • Sahand Negahban

    () (Department of Statistics, Yale University, New Haven, Connecticut 06510)

  • Sewoong Oh

    () (Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Devavrat Shah

    () (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts 02139)


The question of aggregating pairwise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g., MSR’s TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding ‘scores’ for each object (e.g., player’s rating) is of interest for understanding the intensity of the preferences.In this paper, we propose Rank Centrality , an iterative rank aggregation algorithm for discovering scores for objects (or items) from pairwise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with an edge present between a pair of objects if they are compared; the score, which we call Rank Centrality, of an object turns out to be its stationary probability under this random walk.To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equivalent to the Multinomial Logit (MNL) for pairwise comparisons) in which each object has an associated score that determines the probabilistic outcomes of pairwise comparisons between objects. In terms of the pairwise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model are identical. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. In particular, the number of samples required to learn the score well with high probability depends on the structure of the comparison graph. When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g., each item is compared to a subset of randomly chosen items, this leads to dependence on the number of samples that is nearly order optimal.Experimental evaluations on synthetic data sets generated according to the BTL model show that our algorithm performs as well as the maximum likelihood estimator for that model and outperforms other popular ranking algorithms.

Suggested Citation

  • Sahand Negahban & Sewoong Oh & Devavrat Shah, 2017. "Rank Centrality: Ranking from Pairwise Comparisons," Operations Research, INFORMS, vol. 65(1), pages 266-287, February.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:1:p:266-287

    Download full text from publisher

    File URL:
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:1:p:266-287. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.