IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i2p166-169.html
   My bibliography  Save this article

OM Forum —Offered Load Analysis for Staffing

Author

Listed:
  • Ward Whitt

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

Abstract

This essay, based on my 2012 MSOM Fellow Lecture, discusses an idea that has been useful for developing effective methods to set staffing levels in service systems: offered load analysis. The main idea is to tackle a hard problem by first seeking an insightful simplification. For capacity planning to meet uncertain exogenous demand, offered load analysis looks at the amount of capacity that would be used if there were no constraints on its availability. This simplification is helpful because the stochastic model becomes much more tractable. Offered load analysis can be especially helpful when the demand is not only uncertain but also time varying, as in many service systems. Given the distribution of the stochastic offered load, we often can set staffing levels to stabilize performance at target levels, even in face of a strongly time-varying arrival rate, long service times, and network structure.

Suggested Citation

  • Ward Whitt, 2013. "OM Forum —Offered Load Analysis for Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 166-169, May.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:2:p:166-169
    DOI: 10.1287/msom.1120.0428
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1120.0428
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1120.0428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    2. Wallace J. Hopp & Mark L. Spearman, 2004. "To Pull or Not to Pull: What Is the Question?," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 133-148, August.
    3. Gérard P. Cachon, 2012. "What Is Interesting in Operations Management?," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 166-169, April.
    4. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
    2. Vijayalakshmi Chetlapalli & K. S. S. Iyer & Himanshu Agrawal, 2020. "Modelling time-dependent aggregate traffic in 5G networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(4), pages 557-575, April.
    3. Na Li & Xiaorui Li & Paul Forero, 2022. "Physician scheduling for outpatient department with nonhomogeneous patient arrival and priority queue," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 879-915, December.
    4. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
    5. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    6. Opher Baron & Oded Berman & Dmitry Krass & Jianfu Wang, 2017. "Strategic Idleness and Dynamic Scheduling in an Open-Shop Service Network: Case Study and Analysis," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 52-71, February.
    7. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    2. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    3. Yongkyu Cho & Young Myoung Ko, 2020. "Stabilizing the virtual response time in single-server processor sharing queues with slowly time-varying arrival rates," Annals of Operations Research, Springer, vol. 293(1), pages 27-55, October.
    4. Carri W. Chan & Jing Dong & Linda V. Green, 2017. "Queues with Time-Varying Arrivals and Inspections with Applications to Hospital Discharge Policies," Operations Research, INFORMS, vol. 65(2), pages 469-495, April.
    5. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    6. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    7. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    8. Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
    9. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
    10. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    11. Scherrer-Rathje, Maike & Boyle, Todd A. & Deflorin, Patricia, 2009. "Lean, take two! Reflections from the second attempt at lean implementation," Business Horizons, Elsevier, vol. 52(1), pages 79-88.
    12. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    13. Izady, Navid & Worthington, Dave, 2012. "Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 531-540.
    14. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    15. Ward Whitt, 2007. "What you should know about queueing models to set staffing requirements in service systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 476-484, August.
    16. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    17. Miriam Pekarcikova & Peter Trebuna & Marek Kliment & Michal Dic, 2021. "Solution of Bottlenecks in the Logistics Flow by Applying the Kanban Module in the Tecnomatix Plant Simulation Software," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    18. Jérémie Gallien & Stephen C. Graves & Alan Scheller-Wolf, 2016. "OM Forum—Practice-Based Research in Operations Management: What It Is, Why Do It, Related Challenges, and How to Overcome Them," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 5-14, February.
    19. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    20. Jos A. C. Bokhorst & Jannes Slomp, 2010. "Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer," Interfaces, INFORMS, vol. 40(4), pages 303-312, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:2:p:166-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.