IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v63y2017i10p3328-3346.html
   My bibliography  Save this article

Moral Hazard in Dynamic Risk Management

Author

Listed:
  • Jakša Cvitanić

    (Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125)

  • Dylan Possamaï

    (CEREMADE, University Paris-Dauphine, 75116 Paris, France)

  • Nizar Touzi

    (CMAP, Ecole Polytechnique, 91128 Palaiseau, France)

Abstract

We consider a contracting problem in which a principal hires an agent to manage a risky project. When the agent chooses volatility components of the output process and the principal observes the output continuously, the principal can compute the quadratic variation of the output, but not the individual components. This leads to moral hazard with respect to the risk choices of the agent. To find the optimal contract, we develop a novel approach to solving principal–agent problems: first, we identify a family of admissible contracts for which the optimal agent’s action is explicitly characterized; then, we show that we do not lose on generality when finding the optimal contract inside this family, up to integrability conditions. To do this, we use the recent theory of singular changes of measures for Itô processes. We solve the problem in the case of CARA preferences and show that the optimal contract is linear in these factors: the contractible sources of risk, including the output, the quadratic variation of the output and the cross-variations between the output and the contractible risk sources. Thus, like sample Sharpe ratios used in practice, path-dependent contracts naturally arise when there is moral hazard with respect to risk management. In a numerical example, we show that the loss of efficiency can be significant if the principal does not use the quadratic variation component of the optimal contract.

Suggested Citation

  • Jakša Cvitanić & Dylan Possamaï & Nizar Touzi, 2017. "Moral Hazard in Dynamic Risk Management," Management Science, INFORMS, vol. 63(10), pages 3328-3346, October.
  • Handle: RePEc:inm:ormnsc:v:63:y:2017:i:10:p:3328-3346
    DOI: 10.1287/mnsc.2016.2493
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2016.2493
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2016.2493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    3. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    4. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    5. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.
    6. Marcel Nutz & H. Mete Soner, 2010. "Superhedging and Dynamic Risk Measures under Volatility Uncertainty," Papers 1011.2958, arXiv.org, revised Jun 2012.
    7. Yuliy Sannikov, 2008. "A Continuous-Time Version of the Principal-Agent Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 957-984.
    8. Neufeld, Ariel & Nutz, Marcel, 2014. "Measurability of semimartingale characteristics with respect to the probability law," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3819-3845.
    9. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    10. Holmstrom, Bengt & Milgrom, Paul, 1987. "Aggregation and Linearity in the Provision of Intertemporal Incentives," Econometrica, Econometric Society, vol. 55(2), pages 303-328, March.
    11. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.
    12. Cadenillas, Abel & Cvitanic, Jaksa & Zapatero, Fernando, 2007. "Optimal risk-sharing with effort and project choice," Journal of Economic Theory, Elsevier, vol. 133(1), pages 403-440, March.
    13. Jaeyoung Sung, 1995. "Linearity with Project Selection and Controllable Diffusion Rate in Continuous-Time Principal-Agent Problems," RAND Journal of Economics, The RAND Corporation, vol. 26(4), pages 720-743, Winter.
    14. Hui Ou-Yang, 2003. "Optimal Contracts in a Continuous-Time Delegated Portfolio Management Problem," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 173-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Liu & Qiaoyu Peng, 2022. "Evolutionary Game Analysis of Enterprise Green Innovation and Green Financing in Platform Supply Chain," Sustainability, MDPI, vol. 14(13), pages 1-13, June.
    2. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    3. Antonio Díaz & Francisco Jareño & Eliseo Navarro, 2022. "Yield curve data choice and potential moral hazard: An empirical exercise on pricing callable bonds," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2124-2145, April.
    4. Feng, Felix Zhiyu & Westerfield, Mark M., 2021. "Dynamic resource allocation with hidden volatility," Journal of Financial Economics, Elsevier, vol. 140(2), pages 560-581.
    5. Yu Huang & Nengjiu Ju & Hao Xing, 2023. "Performance Evaluation, Managerial Hedging, and Contract Termination," Management Science, INFORMS, vol. 69(8), pages 4953-4971, August.
    6. Camilo Hern'andez & Dylan Possamai, 2023. "Time-inconsistent contract theory," Papers 2303.01601, arXiv.org.
    7. Tak-Yuen Wong, 2019. "Dynamic Agency and Endogenous Risk-Taking," Management Science, INFORMS, vol. 65(9), pages 4032-4048, September.
    8. Emma Hubert, 2023. "Continuous-time incentives in hierarchies," Finance and Stochastics, Springer, vol. 27(3), pages 605-661, July.
    9. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    10. Emma Hubert & Thibaut Mastrolia & Dylan Possamai & Xavier Warin, 2020. "Incentives, lockdown, and testing: from Thucydides's analysis to the COVID-19 pandemic," Papers 2009.00484, arXiv.org, revised Apr 2022.
    11. Bastien Baldacci & Dylan Possamaï, 2022. "Governmental incentives for green bonds investment," Mathematics and Financial Economics, Springer, volume 16, number 5, June.
    12. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    13. Daniel Krv{s}ek & Dylan Possamai, 2023. "Randomisation with moral hazard: a path to existence of optimal contracts," Papers 2311.13278, arXiv.org.
    14. Steven Campbell & Yichao Chen & Arvind Shrivats & Sebastian Jaimungal, 2021. "Deep Learning for Principal-Agent Mean Field Games," Papers 2110.01127, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakv{s}a Cvitani'c & Dylan Possamai & Nizar Touzi, 2014. "Moral Hazard in Dynamic Risk Management," Papers 1406.5852, arXiv.org, revised Mar 2015.
    2. Thibaut Mastrolia & Dylan Possamai, 2015. "Moral hazard under ambiguity," Papers 1511.03616, arXiv.org, revised Oct 2016.
    3. Jakša Cvitanić & Dylan Possamaï & Nizar Touzi, 2018. "Dynamic programming approach to principal–agent problems," Finance and Stochastics, Springer, vol. 22(1), pages 1-37, January.
    4. Thibaut Mastrolia & Dylan Possamaï, 2018. "Moral Hazard Under Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 452-500, November.
    5. Jaeyoung Sung, 2022. "Optimal contracting under mean-volatility joint ambiguity uncertainties," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(2), pages 593-642, September.
    6. Emma Hubert, 2023. "Continuous-time incentives in hierarchies," Finance and Stochastics, Springer, vol. 27(3), pages 605-661, July.
    7. Emma Hubert, 2020. "Continuous-time incentives in hierarchies," Papers 2007.10758, arXiv.org.
    8. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    9. Cvitanić, Jakša & Xing, Hao, 2018. "Asset pricing under optimal contracts," Journal of Economic Theory, Elsevier, vol. 173(C), pages 142-180.
    10. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.
    11. Francesca Biagini & Yinglin Zhang, 2017. "Reduced-form framework under model uncertainty," Papers 1707.04475, arXiv.org, revised Mar 2018.
    12. Dylan Possamai & Xiaolu Tan & Chao Zhou, 2015. "Stochastic control for a class of nonlinear kernels and applications," Papers 1510.08439, arXiv.org, revised Jul 2017.
    13. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    14. Nadide Banu Olcay, 2016. "Dynamic incentive contracts with termination threats," Review of Economic Design, Springer;Society for Economic Design, vol. 20(4), pages 255-288, December.
    15. Alex Edmans & Xavier Gabaix, 2011. "Tractability in Incentive Contracting," The Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 2865-2894.
    16. Jianjun Miao & Alejandro Rivera, 2016. "Robust Contracts in Continuous Time," Econometrica, Econometric Society, vol. 84, pages 1405-1440, July.
    17. Romuald Elie & Emma Hubert & Thibaut Mastrolia & Dylan Possamai, 2019. "Mean-field moral hazard for optimal energy demand response management," Papers 1902.10405, arXiv.org, revised Mar 2020.
    18. Bastien Baldacci & Dylan Possamaï, 2022. "Governmental incentives for green bonds investment," Mathematics and Financial Economics, Springer, volume 16, number 5, June.
    19. Thibaut Mastrolia & Zhenjie Ren, 2018. "Principal-Agent Problem with Common Agency without Communication," Working Papers hal-01534611, HAL.
    20. Francesca Biagini & Katharina Oberpriller, 2020. "Reduced-form setting under model uncertainty with non-linear affine processes," Papers 2006.14307, arXiv.org, revised Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:63:y:2017:i:10:p:3328-3346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.