IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v44y2025i1p176-195.html
   My bibliography  Save this article

Online Causal Inference for Advertising in Real-Time Bidding Auctions

Author

Listed:
  • Caio Waisman

    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

  • Harikesh S. Nair

    (Google LLC, Mountain View, California 94043)

  • Carlos Carrion

    (College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Real-time bidding systems, which utilize auctions to allocate user impressions to competing advertisers, continue to enjoy success in digital advertising. Assessing the effectiveness of such advertising remains a challenge in research and practice. This paper proposes a new approach to perform causal inference on advertising bought through such mechanisms. Leveraging the economic structure of first- and second-price auctions, we establish novel results that show how the effects of advertising are connected to and, hence, identified from optimal bids. Importantly, we also outline the precise conditions under which these relationships hold. Because these optimal bids are required to estimate the effects of advertising, we present an adapted Thompson Sampling algorithm to solve a multiarmed bandit problem that succeeds in recovering such bids and, consequently, the effects of advertising, while minimizing the costs of experimentation. We also show that a greedy variant of this algorithm can perform just as well, if not better, when exploiting the structure of the model we consider. We use data from real-time bidding auctions to show that it outperforms commonly used methods to estimate the effects of advertising.

Suggested Citation

  • Caio Waisman & Harikesh S. Nair & Carlos Carrion, 2025. "Online Causal Inference for Advertising in Real-Time Bidding Auctions," Marketing Science, INFORMS, vol. 44(1), pages 176-195, January.
  • Handle: RePEc:inm:ormksc:v:44:y:2025:i:1:p:176-195
    DOI: 10.1287/mksc.2022.0406
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.0406
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.0406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vijverberg, Wim P. M., 1993. "Measuring the unidentified parameter of the extended Roy model of selectivity," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 69-89.
    2. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    3. Koop, Gary & Poirier, Dale J., 1997. "Learning about the across-regime correlation in switching regression models," Journal of Econometrics, Elsevier, vol. 78(2), pages 217-227, June.
    4. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    5. Elea McDonnell Feit & Ron Berman, 2019. "Test & Roll: Profit-Maximizing A/B Tests," Marketing Science, INFORMS, vol. 38(6), pages 1038-1058, November.
    6. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, January.
    7. Maria Dimakopoulou & Zhengyuan Zhou & Susan Athey & Guido Imbens, 2017. "Estimation Considerations in Contextual Bandits," Papers 1711.07077, arXiv.org, revised Dec 2018.
    8. Sébastien Bubeck & Rémi Munos & Gilles Stoltz, 2010. "Pure Exploration for Multi-Armed Bandit Problems," Working Papers hal-00257454, HAL.
    9. Hal R. Varian, 2009. "Online Ad Auctions," American Economic Review, American Economic Association, vol. 99(2), pages 430-434, May.
    10. Olsen, Randall J, 1978. "Note on the Uniqueness of the Maximum Likelihood Estimator for the Tobit Model," Econometrica, Econometric Society, vol. 46(5), pages 1211-1215, September.
    11. Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
    12. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Tong & Lin, Xiliang & Nair, Harikesh S. & Hao, Jun & Xiang, Bin & Fan, Shurui, 2020. "Comparison Lift: Bandit-Based Experimentation System for Online Advertising," Research Papers 3904, Stanford University, Graduate School of Business.
    2. Brett R Gordon & Kinshuk Jerath & Zsolt Katona & Sridhar Narayanan & Jiwoong Shin & Kenneth C Wilbur, 2019. "Inefficiencies in Digital Advertising Markets," Papers 1912.09012, arXiv.org, revised Feb 2020.
    3. Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Close Enough? A Large-Scale Exploration of Non-Experimental Approaches to Advertising Measurement," Marketing Science, INFORMS, vol. 42(4), pages 768-793, July.
    4. Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Predictive Incrementality by Experimentation (PIE) for Ad Measurement," Papers 2304.06828, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    2. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    3. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    4. Li, Mingliang & Tobias, Justin L., 2011. "Bayesian inference in a correlated random coefficients model: Modeling causal effect heterogeneity with an application to heterogeneous returns to schooling," Journal of Econometrics, Elsevier, vol. 162(2), pages 345-361, June.
    5. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    6. Francesco Furlanetto & Francesco Ravazzolo & Samad Sarferaz, 2019. "Identification of Financial Factors in Economic Fluctuations," The Economic Journal, Royal Economic Society, vol. 129(617), pages 311-337.
    7. Liu, De-Chih & Chang, Yu-Chien, 2022. "Systematic variations in exchange rate returns," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 569-583.
    8. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    9. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    10. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    12. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    13. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    14. Babatunde O. Abidoye & Joseph A. Herriges & Justin L. Tobias, 2012. "Controlling for Observed and Unobserved Site Characteristics in RUM Models of Recreation Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1070-1093.
    15. Knut Are Aastveit & Gisle James Natvik & Sergio Sola, 2013. "Economic uncertainty and the effectiveness of monetary policy," Working Paper 2013/17, Norges Bank.
    16. Wang, Zheqi & Crook, Jonathan & Andreeva, Galina, 2020. "Reducing estimation risk using a Bayesian posterior distribution approach: Application to stress testing mortgage loan default," European Journal of Operational Research, Elsevier, vol. 287(2), pages 725-738.
    17. Dahem, Ahlem, 2015. "Short term Bayesian inflation forecasting for Tunisia," MPRA Paper 66702, University Library of Munich, Germany.
    18. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    19. Bernardi Mauro & Della Corte Giuseppe & Proietti Tommaso, 2011. "Extracting the Cyclical Component in Hours Worked," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-28, May.
    20. Saqib Amin & Ruhamah Yousaf & Muhammad Awais Anwar & Noman Arshed, 2022. "Assessing the impact of diversity and ageing population on health expenditure of United States," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(2), pages 913-929, March.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:44:y:2025:i:1:p:176-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.