IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v16y2021i1a10.html
   My bibliography  Save this article

Power generation portfolios: A parametric formulation of the efficient frontier

Author

Listed:
  • David Juárez-Luna

    (Universidad Anáhuac México, México)

Abstract

El objetivo de este artículo es proporcionar una metodología para construir, paramétricamente, la frontera eficiente (EF, por sus siglas en inglés) de portafolios de generación de energía (PGP, por sus siglas en inglés). La metodología opera de la siguiente manera. Primero, obtenemos dos conjuntos de las participaciones de los activos: uno que garantiza el máximo rendimiento del PGP; y otro que garantiza el riesgo mínimo del PGP. La EF corresponde a la ecuación paramétrica de los perfiles de riesgo-rendimiento, desde el riesgo mínimo hasta el máximo rendimiento esperado del PGP. La metodología propuesta se aplica para replicar los resultados de tres artículos existentes. La presente metodología permite encontrar resultados diferentes y más coherentes que los obtenidos en los documentos originales. El análisis sugiere que existen alternativas de inversión óptimas que han sido negadas por análisis previos. Este hecho crea un sesgo en el diseño de políticas de inversión en la generación de electricidad. Una limitante del trabajo es que el análisis se basa en el supuesto de que las covarianzas de los rendimientos de los diferentes activos son cero. Este supuesto implica ganancias en cuanto al manejo, la claridad y en el alcance de la metodología formulada.

Suggested Citation

  • David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
  • Handle: RePEc:imx:journl:v:16:y:2021:i:1:a:10
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/447
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    2. Rowan Adams & Tooraj Jamasb, 2016. "Optimal Power Generation Portfolios with Renewables: An Application to the UK," Working Papers EPRG 1620, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Losekann, Luciano & Marrero, Gustavo A. & Ramos-Real, Francisco J. & de Almeida, Edmar Luiz Fagundes, 2013. "Efficient power generating portfolio in Brazil: Conciliating cost, emissions and risk," Energy Policy, Elsevier, vol. 62(C), pages 301-314.
    4. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    5. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    6. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    7. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    8. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    2. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    3. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    4. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    5. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    6. Kim, Yeong Jae & Cho, Seong-Hoon & Sharma, Bijay P., 2021. "Constructing efficient portfolios of low-carbon technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    8. Sinsel, Simon R. & Yan, Xuqian & Stephan, Annegret, 2019. "Building resilient renewable power generation portfolios: The impact of diversification on investors’ risk and return," Applied Energy, Elsevier, vol. 254(C).
    9. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    10. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    11. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," NBER Working Papers 22494, National Bureau of Economic Research, Inc.
    12. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    13. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    14. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    15. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    16. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    17. Lynch & John Curtis, 2016. "The effects of wind generation capacity on electricity prices and generation costs: a Monte Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 133-151, January.
    18. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    19. Li, Carmen & Chyong, Chi Kong & Reiner, David M. & Roques, Fabien, 2024. "Taking a Portfolio approach to wind and solar deployment: The case of the National Electricity Market in Australia," Applied Energy, Elsevier, vol. 369(C).
    20. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.

    More about this item

    Keywords

    Portafolio; generación de energía; frontera eficiente; riesgo; rendimiento.;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:16:y:2021:i:1:a:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.