IDEAS home Printed from https://ideas.repec.org/a/ijc/ijcjou/y2025q2a8.html
   My bibliography  Save this article

A Large Bayesian VAR of the U.S. Economy

Author

Listed:
  • Richard K. Crump

    (Federal Reserve Bank of New York)

  • Stefano Eusepi

    (Brown University)

  • Domenico Giannone

    (International Monetary Fund and University of Washington)

  • Eric Qian

    (Princeton University)

  • Argia Sbordone

    (Federal Reserve Bank of New York)

Abstract

We model the U.S. macroeconomic and financial sectors using a formal and unified econometric model. Through shrinkage, our Bayesian VAR provides a flexible framework for modeling the dynamics of 31 variables, many of which are tracked by the Federal Reserve. We show how the model can be used for understanding key features of the data, constructing counterfactual scenarios, and evaluating the macroeconomic environment both retrospectively and prospectively. Considering its breadth and versatility for policy applications, our modeling approach gives a reliable, reduced-form alternative to structural models.

Suggested Citation

  • Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia Sbordone, 2025. "A Large Bayesian VAR of the U.S. Economy," International Journal of Central Banking, International Journal of Central Banking, vol. 21(2), pages 351-409, April.
  • Handle: RePEc:ijc:ijcjou:y:2025:q:2:a:8
    as

    Download full text from publisher

    File URL: http://www.ijcb.org/journal/ijcb25q2a8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    2. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    3. Craig S. Hakkio & William R. Keeton, 2009. "Financial stress: what is it, how can it be measured, and why does it matter?," Economic Review, Federal Reserve Bank of Kansas City, vol. 94(Q II), pages 5-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bańbura, Marta & Bobeica, Elena & Giammaria, Alessandro & Porqueddu, Mario & van Spronsen, Josha, 2025. "A new model to forecast energy inflation in the euro area," Working Paper Series 3062, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    2. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    3. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    4. Marfatia, Hardik A., 2015. "Monetary policy's time-varying impact on the US bond markets: Role of financial stress and risks," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 103-123.
    5. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    6. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    7. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    8. David de Antonio Liedo & Elena Fernández Muñoz, 2010. "Nowcasting Spanish GDP growth in real time: "One and a half months earlier"," Working Papers 1037, Banco de España.
    9. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    10. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    11. Pedro Gomis-Porqueras & Romina Ruprecht & Xuan Zhou, 2023. "A Financial Stress Index for a Small Open Economy: The Australian Case," Finance and Economics Discussion Series 2023-029, Board of Governors of the Federal Reserve System (U.S.).
    12. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    13. S. Yaser Samadi & Wiranthe B. Herath, 2023. "Reduced-rank Envelope Vector Autoregressive Models," Papers 2309.12902, arXiv.org.
    14. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    15. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    16. Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012. "Global commodity cycles and linkages: a FAVAR approach," Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
    17. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    18. Varga, Katalin & Szendrei, Tibor, 2025. "Non-stationary financial risk factors and macroeconomic vulnerability for the UK," International Review of Financial Analysis, Elsevier, vol. 97(C).
    19. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.
    20. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijc:ijcjou:y:2025:q:2:a:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bank for International Settlements (email available below). General contact details of provider: https://www.ijcb.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.