IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v8y2014i2p12.html
   My bibliography  Save this article

Volatility Estimation via Jump Indicator

Author

Listed:
  • R. Aboulaich
  • H. Ben Ameur
  • M. Lamarti Sefian

Abstract

The volatility is considered constant in Black and Scholes model. However, this implausible assumption leads to an undervaluation of options. We try to remediate to this drawback considering a more realistic model where the volatility is a piecewise constant function of time. We introduce a jump indicator to locate iteratively discontinuities of volatility and use an optimization process to estimate volatility values. We compare our results with regularization method (Aboulaich & Medarhri, 2013) and "AutoRegressive Conditional Heteroskedasticity" ARCH method (Engle, 1982).

Suggested Citation

  • R. Aboulaich & H. Ben Ameur & M. Lamarti Sefian, 2014. "Volatility Estimation via Jump Indicator," Modern Applied Science, Canadian Center of Science and Education, vol. 8(2), pages 1-12, April.
  • Handle: RePEc:ibn:masjnl:v:8:y:2014:i:2:p:12
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/30693/19619
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/30693
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Chiarella & Mark Craddock & Nadima El-Hassan, 2000. "The Calibration of Stock Option Pricing Models Using Inverse Problem Methodology," Research Paper Series 39, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    3. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    2. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, April.
    3. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    4. Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
    5. Patricia Fraser & Andrew McKaig, 2001. "Basis variation and a common source of risk: evidence from UK futures markets," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 39-62.
    6. Wenli Zhu & Xinfeng Ruan, 2019. "Pricing Swaps on Discrete Realized Higher Moments Under the Lévy Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 507-532, February.
    7. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    8. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    9. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
    10. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    11. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. repec:dau:papers:123456789/5374 is not listed on IDEAS
    14. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 9, July-Dece.
    15. Bardhan, Indrajit & Chao, Xiuli, 1996. "Stochastic multi-agent equilibria in economies with jump-diffusion uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 361-384.
    16. Asea, Patrick K. & Ncube, Mthuli, 1998. "Heterogeneous information arrival and option pricing," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 291-323.
    17. Chihwa Kao, 2001. "Some New Approaches to Formulate and Estimate Friction-Bernoulli Jump Diffusion and Friction-GARCH," Center for Policy Research Working Papers 35, Center for Policy Research, Maxwell School, Syracuse University.
    18. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    19. I.-Yuan Chuang & Jin-Ray Lu & Pei-Hsuan Lee, 2007. "Forecasting volatility in the financial markets: a comparison of alternative distributional assumptions," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1051-1060.
    20. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    21. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:8:y:2014:i:2:p:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.