IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2022i2p81.html
   My bibliography  Save this article

Real-time Inferential Analytics Based on Online Databases of Trends: A Breakthrough Within the Discipline of Digital Epidemiology of Dentistry and Oral-Maxillofacial Surgery

Author

Listed:
  • Ahmed Al-Imam
  • Usama Khalid
  • Dawoude Kaouche
  • Nawfal Al-Hadithi

Abstract

Background- Epidemiological sciences have been evolving at an exponential rate paralleled only by the comparable growth within the discipline of data science. Digital epidemiological studies are playing a vital role in medical science analytics for the past few decades. To date, there are no published attempts at deploying the use of real-time analytics in connection with the disciplines of Dentistry or Medicine. Aims and Objectives- We deployed a real-time statistical analysis in connection with topics in Dental Anatomy and Dental Pathology represented by the maxillary sinus, posterior maxillary teeth, related oral pathology. The purpose is to infer the digital epidemiology based on a continuous stream of raw data retrieved from Google Trends database. Materials and Methods- Statistical analysis was carried out via Microsoft Excel 2016 and SPSS version 24. Google Trends database was used to retrieve data for digital epidemiology. Real-time analysis and the statistical inference were based on encoding a programming script using Python high-level programming language. A systematic review of the literature was carried out via PubMed-NCBI, the Cochrane Library, and Elsevier databases. Results- The comprehensive review of the literature, based on specific keywords search, yielded 491813 published studies. These were distributed as 488884 (PubMed-NCBI), 1611 (the Cochrane Library), and 1318 (Elsevier). However, there was no single study attempting real-time analytics. Nevertheless, we succeeded in achieving an automated real-time stream of data accompanied by a statistical inference based on data extrapolated from Google Trends. Conclusion- Real-time analytics are of considerable impact when implemented in biological and life sciences as they will tremendously reduce the required resources for research. Predictive analytics, based on artificial neural networks and machine learning algorithms, can be the next step to be deployed in continuation of the real-time systems to prognosticate changes in the temporal trends and the digital epidemiology of phenomena of interest.

Suggested Citation

  • Ahmed Al-Imam & Usama Khalid & Dawoude Kaouche & Nawfal Al-Hadithi, 2019. "Real-time Inferential Analytics Based on Online Databases of Trends: A Breakthrough Within the Discipline of Digital Epidemiology of Dentistry and Oral-Maxillofacial Surgery," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 1-81, February.
  • Handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:81
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/38043/40685
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/38043
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    2. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    3. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    4. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    5. David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    6. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    7. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    8. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    9. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    10. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    11. Sansone, Dario, 2019. "Pink work: Same-sex marriage, employment and discrimination," Journal of Public Economics, Elsevier, vol. 180(C).
    12. Pulkit Sharma & Achut Manandhar & Patrick Thomson & Jacob Katuva & Robert Hope & David A. Clifton, 2019. "Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    13. John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
    14. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    15. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    16. Christopher Hansman & Harrison Hong & Áureo de Paula & Vishal Singh, 2020. "A Sticky-Price View of Hoarding," NBER Working Papers 27051, National Bureau of Economic Research, Inc.
    17. Chung-Yi Lin & Shu-Yi Liaw & Chao-Chun Chen & Mao-Yuan Pai & Yuh-Min Chen, 2017. "A computer-based approach for analyzing consumer demands in electronic word-of-mouth," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 225-242, August.
    18. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    19. Wesal M. Aldarabseh, 2019. "The Interest in Islamic Finance Contracts in Saudi Arabia as Viewed by Google Trends," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(9), pages 1-12, September.
    20. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.