IDEAS home Printed from https://ideas.repec.org/a/ibn/ach123/v10y2018i2p36.html
   My bibliography  Save this article

Researcher Mobility and Innovation: The Effect of Researcher Mobility on Organizational R&D Performance in the Emerging Nations' Companies

Author

Listed:
  • Ayano Fujiwara

Abstract

This study applies a knowledge production function to an empirical analysis of the relationship between innovation and the movement of knowledge workers. In the past, investments in R&D and human resources were used as indices to measure innovation. However, this study analyzes the role that the movement of knowledge workers plays in innovation and the growth of the new corporations that recruited them from mature companies. This study reveals that the fluidity of talent and informal networks play an important role during the process of innovation. The analysis clearly shows that when innovation is measured by number of patents, the contribution of highly experienced and highly specialized researchers from developed countries is especially high. On the other hand, when innovation is measured by patent quality, both the number of researchers and the researchers’ years of experience clearly exhibit positive effects.

Suggested Citation

  • Ayano Fujiwara, 2018. "Researcher Mobility and Innovation: The Effect of Researcher Mobility on Organizational R&D Performance in the Emerging Nations' Companies," Asian Culture and History, Canadian Center of Science and Education, vol. 10(2), pages 1-36, September.
  • Handle: RePEc:ibn:ach123:v:10:y:2018:i:2:p:36
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ach/article/download/74788/41702
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ach/article/view/74788
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kortum, Samuel & Lerner, Josh, 1998. "Stronger protection or technological revolution: what is behind the recent surge in patenting?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 48(1), pages 247-304, June.
    2. Hall, Bronwyn H & Griliches, Zvi & Hausman, Jerry A, 1986. "Patents and R and D: Is There a Lag?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(2), pages 265-283, June.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1, March.
    5. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    6. Dietmar Harhoff, 1998. "R&D and Productivity in German Manufacturing Firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 6(1), pages 29-50.
    7. Ariél Pakes & Zvi Griliches, 1984. "Estimating Distributed Lags in Short Panels with an Application to the Specification of Depreciation Patterns and Capital Stock Constructs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(2), pages 243-262.
    8. Jacques Mairesse & Bronwyn H. Hall, 1996. "Estimating the Productivity of Research and Development: An Exploration of GMM Methods Using Data on French & United States Manufacturing Firms," NBER Working Papers 5501, National Bureau of Economic Research, Inc.
    9. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    10. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    11. Bruno Crepon & Emmanuel Duguet & Jacques Mairesse, 1998. "Research, Innovation And Productivity: An Econometric Analysis At The Firm Level," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 7(2), pages 115-158.
    12. Zvi Griliches & Jacques Mairesse, 1981. "Productivity and R and D at the Firm Level," NBER Working Papers 0826, National Bureau of Economic Research, Inc.
    13. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
    14. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    15. Reitzig, Markus, 2003. "What determines patent value?: Insights from the semiconductor industry," Research Policy, Elsevier, vol. 32(1), pages 13-26, January.
    16. Ariel Pakes & Mark Schankerman, 1984. "The Rate of Obsolescence of Patents, Research Gestation Lags, and the Private Rate of Return to Research Resources," NBER Chapters, in: R&D, Patents, and Productivity, pages 73-88, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landon Kleis & Paul Chwelos & Ronald V. Ramirez & Iain Cockburn, 2012. "Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity," Information Systems Research, INFORMS, vol. 23(1), pages 42-59, March.
    2. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    3. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    4. Kornelius Kraft & Jörg Stank & Ralf Dewenter, 2011. "Co-determination and innovation," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 35(1), pages 145-172.
    5. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    6. Gamarra, Yanis Luca & Friedl, Gunther, 2023. "Declared essential patents and average total R&D expenditures per patent family," Telecommunications Policy, Elsevier, vol. 47(7).
    7. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    8. Hans Loof & Almas Heshmati, 2006. "On the relationship between innovation and performance: A sensitivity analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(4-5), pages 317-344.
    9. Wang, Ning & Hagedoorn, John, 2014. "The lag structure of the relationship between patenting and internal R&D revisited," Research Policy, Elsevier, vol. 43(8), pages 1275-1285.
    10. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    11. Beneito, Pilar, 2006. "The innovative performance of in-house and contracted R&D in terms of patents and utility models," Research Policy, Elsevier, vol. 35(4), pages 502-517, May.
    12. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    13. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    14. Ornaghi, Carmine, 2006. "Spillovers in product and process innovation: Evidence from manufacturing firms," International Journal of Industrial Organization, Elsevier, vol. 24(2), pages 349-380, March.
    15. Dirk Czarnitzki & Cindy Lopes-Bento, 2014. "Innovation Subsidies: Does the Funding Source Matter for Innovation Intensity and Performance? Empirical Evidence from Germany," Industry and Innovation, Taylor & Francis Journals, vol. 21(5), pages 380-409, July.
    16. Blazsek, Szabolcs & Escribano, Alvaro, 2010. "Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors," Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
    17. Chadha, Alka, 2009. "TRIPs and patenting activity: Evidence from the Indian pharmaceutical industry," Economic Modelling, Elsevier, vol. 26(2), pages 499-505, March.
    18. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    19. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    20. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ach123:v:10:y:2018:i:2:p:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.