IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1323-d109299.html
   My bibliography  Save this article

Ecological Footprint Analysis Based on Changing Food Consumption in a Poorly Developed Area of China

Author

Listed:
  • Lin Zhen

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    School of Resource and Environment, University of Chinese Academy of Sciences, Yuquan Road, Chaoyang District, Beijing 100109, China)

  • Bingzhen Du

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China)

Abstract

The per capita ecological footprint (EF) is a useful tool to compare consumption with nature's ability to support this consumption. Guyuan is an economically impoverished region in China, where EF provides important insights into whether human consumption can be sustained by the local per capita biological capacity (BC), which represents the environment’s ability to support resource use. We estimated the EF of food consumption using local equivalence and yield factors, and compared EF in 1998 and 2013 with BC, which represented the existing biologically productive area (including cultivated land, grassland, forest, and water bodies) that supports this consumption. Data were collected from household surveys, government statistics, and land use maps. We found that food consumption changed, with decreasing consumption of staple foods and increasing consumption of meat, eggs, milk, edible oils, fruit, and vegetables. Decreased staple food consumption decreased the EF for this food group, but the large increase in meat consumption greatly increased EF from meat production (to more than 41 times the 1998 value). Cultivated land contributed greatly to both EF and BC, and staple foods and vegetables were the main EF components for this land. Overall, EF from food consumption decreased from 1998 to 2013, but local BC remained 188,356 ha below EF (i.e., current consumption is not sustainable based on local resources). The Grain for Green program, which focuses on increasing the BC of forest and grassland by replacing degraded cultivated land with these land use types, decreased the BC of cultivated land, leading to wide spatial variation in both EF and BC. These results will inform policy development by revealing the condition of each region’s use of the locally available production resources.

Suggested Citation

  • Lin Zhen & Bingzhen Du, 2017. "Ecological Footprint Analysis Based on Changing Food Consumption in a Poorly Developed Area of China," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1323-:d:109299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    2. Holden, Stein T. & Lunduka, Rodney, 2012. "Input Subsidies, Cash Constraints and Timing of Input Supply:-Experimental Evidence from Malawi," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 131460, International Association of Agricultural Economists.
    3. Bicknell, Kathryn B. & Ball, Richard J. & Cullen, Ross & Bigsby, Hugh R., 1998. "New methodology for the ecological footprint with an application to the New Zealand economy," Ecological Economics, Elsevier, vol. 27(2), pages 149-160, November.
    4. Sevil Acar & Ahmet Atil Asici, 2015. "Does Income Growth Relocate Ecological Footprint?," Working Papers 938, Economic Research Forum, revised Sep 2015.
    5. Meidad Kissinger & Cornelia Sussman & Jennie Moore & William E. Rees, 2013. "Accounting for the Ecological Footprint of Materials in Consumer Goods at the Urban Scale," Sustainability, MDPI, vol. 5(5), pages 1-14, May.
    6. Jason Venetoulis & John Talberth, 2008. "Refining the ecological footprint," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(4), pages 441-469, August.
    7. Bagliani, Marco & Bravo, Giangiacomo & Dalmazzone, Silvana, 2008. "A consumption-based approach to environmental Kuznets curves using the ecological footprint indicator," Ecological Economics, Elsevier, vol. 65(3), pages 650-661, April.
    8. Gerbens-Leenes, P. W. & Nonhebel, S., 2002. "Consumption patterns and their effects on land required for food," Ecological Economics, Elsevier, vol. 42(1-2), pages 185-199, August.
    9. Rodrigo A. Arriagada, & Paul J. Ferraro & Erin O. Sills & Subhrendu K. Pattanayak & Silvia Cordero-Sancho, 2012. "Do Payments for Environmental Services Affect Forest Cover? A Farm-Level Evaluation from Costa Rica," Land Economics, University of Wisconsin Press, vol. 88(2), pages 382-399.
    10. Maes, Joachim & Egoh, Benis & Willemen, Louise & Liquete, Camino & Vihervaara, Petteri & Schägner, Jan Philipp & Grizzetti, Bruna & Drakou, Evangelia G. & Notte, Alessandra La & Zulian, Grazia & Boura, 2012. "Mapping ecosystem services for policy support and decision making in the European Union," Ecosystem Services, Elsevier, vol. 1(1), pages 31-39.
    11. Zhen, Lin & Cao, Shuyan & Cheng, Shengkui & Xie, Gaodi & Wei, Yunjie & Liu, Xuelin & Li, Fen, 2010. "Arable land requirements based on food consumption patterns: Case study in rural Guyuan District, Western China," Ecological Economics, Elsevier, vol. 69(7), pages 1443-1453, May.
    12. Baabou, Wafaa & Grunewald, Nicole & Ouellet-Plamondon, Claudiane & Gressot, Michel & Galli, Alessandro, 2017. "The Ecological Footprint of Mediterranean cities: Awareness creation and policy implications," Environmental Science & Policy, Elsevier, vol. 69(C), pages 94-104.
    13. Li, Hua & Yao, Shunbo & Yin, Runsheng & Liu, Guangquan, 2015. "Assessing the decadal impact of China's sloping land conversion program on household income under enrollment and earning differentiation," Forest Policy and Economics, Elsevier, vol. 61(C), pages 95-103.
    14. Haberl, Helmut & Erb, Karl-Heinz & Krausmann, Fridolin, 2001. "How to calculate and interpret ecological footprints for long periods of time: the case of Austria 1926-1995," Ecological Economics, Elsevier, vol. 38(1), pages 25-45, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Bulent Gurbuz & Elcin Nesirov & Gulay Ozkan, 2021. "Investigating environmental awareness of citizens of Azerbaijan: a survey on ecological footprint," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10378-10396, July.
    2. Hongjie Sun & Benzheng Zhu & Qingqing Cao, 2023. "Future Dietary Transformation and Its Impacts on the Environment in China," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    3. Chuxiong Deng & Zhen Liu & Rongrong Li & Ke Li, 2018. "Sustainability Evaluation Based on a Three-Dimensional Ecological Footprint Model: A Case Study in Hunan, China," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    4. Zhichao Xue & Lin Zhen, 2018. "Impact of Rural Land Transfer on Land Use Functions in Western China’s Guyuan Based on a Multi-Level Stakeholder Assessment Framework," Sustainability, MDPI, vol. 10(5), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Ioana Ghita & Andreea Simona Saseanu & Rodica-Manuela Gogonea & Catalin-Emilian Huidumac-Petrescu, 2018. "Perspectives of Ecological Footprint in European Context under the Impact of Information Society and Sustainable Development," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    2. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    3. Molina Murillo, Sergio A. & Pérez Castillo, Juan Pablo & Herrera Ugalde, María Elena, 2014. "Assessment of environmental payments on indigenous territories: The case of Cabecar-Talamanca, Costa Rica," Ecosystem Services, Elsevier, vol. 8(C), pages 35-43.
    4. Matthew E. Hopton & Adam Berland, 2015. "Calculating Puerto Rico’s Ecological Footprint (1970–2010) Using Freely Available Data," Sustainability, MDPI, vol. 7(7), pages 1-18, July.
    5. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    6. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    7. Emiko Fukase & Will Martin, 2016. "Who Will Feed China in the 21st Century? Income Growth and Food Demand and Supply in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 3-23, February.
    8. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    9. Salisu Barau, Aliyu & Stringer, Lindsay C., 2015. "Access to and allocation of ecosystem services in Malaysia's Pulau Kukup Ramsar Site," Ecosystem Services, Elsevier, vol. 16(C), pages 167-173.
    10. Olimpia Neagu, 2020. "Economic Complexity and Ecological Footprint: Evidence from the Most Complex Economies in the World," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    11. Heink, Ulrich & Jax, Kurt, 2019. "Going Upstream — How the Purpose of a Conceptual Framework for Ecosystem Services Determines Its Structure," Ecological Economics, Elsevier, vol. 156(C), pages 264-271.
    12. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    13. Klimanova, O.A. & Bukvareva, E.N. & Yu, Kolbowsky E. & Illarionova, O.A., 2023. "Assessing ecosystem services in Russia: Case studies from four municipal districts," Land Use Policy, Elsevier, vol. 131(C).
    14. Häyhä, Tiina & Franzese, Pier Paolo & Paletto, Alessandro & Fath, Brian D., 2015. "Assessing, valuing, and mapping ecosystem services in Alpine forests," Ecosystem Services, Elsevier, vol. 14(C), pages 12-23.
    15. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    16. Yue, Dongxia & Xu, Xiaofeng & Hui, Cang & Xiong, Youcai & Han, Xuemei & Ma, Jinhui, 2011. "Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability," Ecological Economics, Elsevier, vol. 70(5), pages 988-994, March.
    17. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    18. Thomas Kuhn & Radomir Pestow & Anja Zenker, 2019. "An Axiomatic Characterization of a Generalized Ecological Footprint," Chemnitz Economic Papers 033, Department of Economics, Chemnitz University of Technology, revised Aug 2019.
    19. Yu Ding & Jian Peng, 2018. "Impacts of Urbanization of Mountainous Areas on Resources and Environment: Based on Ecological Footprint Model," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    20. McInnes, R.J. & Everard, M., 2017. "Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka," Ecosystem Services, Elsevier, vol. 25(C), pages 89-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1323-:d:109299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.