IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i12p15829-16547d60628.html
   My bibliography  Save this article

Regional Water Footprint Assessment: A Case Study of Leshan City

Author

Listed:
  • Rui Zhao

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
    State-Province Joint Engineering Research Lab in Geospatial Information Technology for High Speed Railway Safety, Southwest Jiaotong University, Chengdu 611756, China)

  • Hualing He

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Ning Zhang

    (Department of Economics, Jinan University, Guangzhou 510632, China
    Institute of Resource, Environment and Sustainable Development Research, Jinan University, Guangzhou 510632, China)

Abstract

This paper presents an assessment of urban water footprint in the period of 2001 to 2012 by taking Leshan City, China as a typical case study. The water footprint is calculated by the sum of the water footprints of various sectors, i.e. , crop production, animal products, industrial processes, domestic waster, eco-environment, and virtual water trade. Results show that the water footprints of the various sectors rose by degrees varying from 19% to 55%, which gave rise to an increase of the total water footprint of 43.13% from 2001 to 2012. Crop production and animal products are identified as the major water intensive sectors, accounting for about 68.97% of the total water footprint. The water footprint in the Northeastern area of Leshan City is greater than that of the Southwestern area in the period 1992–2012, resulted in an expansion of water footprint in the Sha Wan and Wu Tongqiao Districts due to the development of urbanization. The application of water footprint assessment is expected to provide insight into the improvement of urban water efficiency, and thus aid in better water resources management.

Suggested Citation

  • Rui Zhao & Hualing He & Ning Zhang, 2015. "Regional Water Footprint Assessment: A Case Study of Leshan City," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15829-16547:d:60628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/12/15829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/12/15829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    2. Alberto Garrido & M. Ramón Llamas & Consuelo Varela-Ortega & Paula Novo & Roberto Rodríguez-Casado & Maite M. Aldaya, 2010. "Water Footprint and Virtual Water Trade in Spain," Natural Resource Management and Policy, Springer, number 978-1-4419-5741-2, December.
    3. Guy Jobbins & Jack Kalpakian & Abdelouahid Chriyaa & Ahmed Legrouri & El Houssine El Mzouri, 2015. "To what end? Drip irrigation and the water-energy-food nexus in Morocco," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 393-406, September.
    4. Martin Keulertz & Eckart Woertz, 2015. "Financial challenges of the nexus: pathways for investment in water, energy and agriculture in the Arab world," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 312-325, September.
    5. Yang, Yanmin & Yang, Yonghui & Moiwo, Juana Paul & Hu, Yukun, 2010. "Estimation of irrigation requirement for sustainable water resources reallocation in North China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1711-1721, November.
    6. Ying, Xiong & Zeng, Guang-Ming & Chen, Gui-Qiu & Tang, Lin & Wang, Ke-Lin & Huang, Dao-You, 2007. "Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China," Ecological Modelling, Elsevier, vol. 209(2), pages 97-109.
    7. Liming Yao & Jiuping Xu & Yifan Li, 2014. "Evaluation of the Efficiency of Low Carbon Industrialization in Cultural and Natural Heritage: Taking Leshan as an Example," Sustainability, MDPI, vol. 6(6), pages 1-18, June.
    8. Dennis Wichelns, 2011. "Do the Virtual Water and Water Footprint Perspectives Enhance Policy Discussions?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 27(4), pages 633-645.
    9. Dennis Wichelns, 2011. "Assessing Water Footprints Will Not Be Helpful in Improving Water Management or Ensuring Food Security," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 27(03), pages 607-619.
    10. Hadi H. Jaafar & Rami Zurayk & Caroline King & Farah Ahmad & Rami Al-Outa, 2015. "Impact of the Syrian conflict on irrigated agriculture in the Orontes Basin," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 436-449, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Zeng & Wei-Ge Luo & Zhe Wang & Fa-Cheng Yi, 2021. "Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    2. Ziheng Feng & Liying Sun, 2024. "Water Conservation Implications Based on Tempo-Spatial Characteristics of Water Footprint in the Water-Receiving Areas of the South-to-North Water Diversion Project, China," Sustainability, MDPI, vol. 16(3), pages 1-18, February.
    3. Yongrok Choi & Malin Song & Seunghwan Myeong, 2016. "Introduction to the Special Issue on the Sustainable Asia Conference 2015," Sustainability, MDPI, vol. 8(3), pages 1-9, March.
    4. Fritz Balkau & Alberto Bezama & Noemie Leroy-Parmentier & Guido Sonnemann, 2021. "A Review on the Use of Life Cycle Methodologies and Tools in Sustainable Regional Development," Sustainability, MDPI, vol. 13(19), pages 1-41, September.
    5. Hua Huang & Daizhong Su & Wenjie Peng & You Wu, 2020. "Development of a Mobile Application System for Eco-Accounting," Sustainability, MDPI, vol. 12(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    2. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    3. Guifang Yang & Zhenghong Chen, 2015. "RS-based fuzzy multiattribute assessment of eco-environmental vulnerability in the source area of the Lishui River of northwest Hunan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1145-1161, September.
    4. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    5. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    6. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    7. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    8. Wegerich, Kai & Van Rooijen, Daniel & Soliev, Ilkhom & Mukhamedova, Nozilakhon, 2015. "Water Security in the Syr Darya Basin," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(9), pages 4657-4684.
    9. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    10. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    11. L. Brilli & E. Lugato & M. Moriondo & B. Gioli & P. Toscano & A. Zaldei & L. Leolini & C. Cantini & G. Caruso & R. Gucci & P. Merante & C. Dibari & R. Ferrise & M. Bindi & S. Costafreda-Aumedes, 2019. "Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 467-491, March.
    12. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    13. Jing Zhang & Ke Wang & Xinming Chen & Wenjuan Zhu, 2011. "Combining a Fuzzy Matter-Element Model with a Geographic Information System in Eco-Environmental Sensitivity and Distribution of Land Use Planning," IJERPH, MDPI, vol. 8(4), pages 1-16, April.
    14. Dorijan Radočaj & Ante Šiljeg & Rajko Marinović & Mladen Jurišić, 2023. "State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    15. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    16. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    17. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    18. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    19. Lee, Seung Oh & Jung, Younghun, 2018. "Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 207(C), pages 80-90.
    20. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15829-16547:d:60628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.