IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1270-d1332043.html
   My bibliography  Save this article

Water Conservation Implications Based on Tempo-Spatial Characteristics of Water Footprint in the Water-Receiving Areas of the South-to-North Water Diversion Project, China

Author

Listed:
  • Ziheng Feng

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Liying Sun

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In order to continuously promote water conservation efforts to alleviate the pressure of water diversion, water footprint (WF) is used as an effective tool to measure water utilization in the water-receiving areas of the Middle Route and Eastern Route of the South-to-North Water Diversion Project (SNWDP). The tempo-spatial variations of WF and spatial equilibrium of water footprint intensity (WFI) in the study area are quantified using the Mann–Kandle trend test, Sen’s slope, and Dagum Gini coefficient decomposition method for the years of 2005–2020. The results show that WF has a significant decreasing trend (Sen’s slop < 0, significant level < 0.05) in 17 cities in the study area, whereas WF shows a significant increasing trend (Sen’s slop > 0, significant level < 0.05) in 10 cities. Cities in the water-receiving areas are categorized into three types based on the contribution of the water utilization sector to changes in WF as follows: agriculture water-dominated city (AD), domestic and ecological water-dominated city (DED), and virtual water trade-dominated city (VWTD). Accordingly, targeted water conservation recommendations are made for these three kinds of cities, and it is suggested that AD, DED, and VWTD cities need to focus on advanced irrigation technologies, water reuse, and trade restructuring, respectively. The overall Gini coefficient of WFI fluctuates between 0.219 and 0.267 in the water-receiving areas of the Middle Route, which is dominated by the differences in city level. However, it fluctuates between 0.412 and 0.278 in the water-receiving areas of the Eastern Route, which is dominated by the differences in provincial level. Accordingly, water conservation hotspots are determined at the city level in the Middle Route and at the provincial level in the Eastern Route with different water management policies. These results provide a scientific support for water conservation management in the water-receiving areas of the SNWDP, as well as a methodological reference for the tempo-spatial characteristics of WF and their implications for water conservation.

Suggested Citation

  • Ziheng Feng & Liying Sun, 2024. "Water Conservation Implications Based on Tempo-Spatial Characteristics of Water Footprint in the Water-Receiving Areas of the South-to-North Water Diversion Project, China," Sustainability, MDPI, vol. 16(3), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1270-:d:1332043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    2. Yunbo Xiang & Wen Shao & Shengyun Wang & Yong Zhang & Yaxin Zhang, 2022. "Study on Regional Differences and Convergence of Green Development Efficiency of the Chemical Industry in the Yangtze River Economic Belt Based on Grey Water Footprint," IJERPH, MDPI, vol. 19(3), pages 1-19, February.
    3. Ruihua Shen & Lei Yao, 2022. "Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 19(11), pages 1-19, June.
    4. Guy Jobbins & Jack Kalpakian & Abdelouahid Chriyaa & Ahmed Legrouri & El Houssine El Mzouri, 2015. "To what end? Drip irrigation and the water-energy-food nexus in Morocco," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 393-406, September.
    5. Rui Zhao & Hualing He & Ning Zhang, 2015. "Regional Water Footprint Assessment: A Case Study of Leshan City," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    6. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    7. Garcia, X. & Pargament, D., 2015. "Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 154-166.
    8. Dagum, Camilo, 1997. "A New Approach to the Decomposition of the Gini Income Inequality Ratio," Empirical Economics, Springer, vol. 22(4), pages 515-531.
    9. Wenquan Gu & Dongguo Shao & Yufang Jiang, 2012. "Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3479-3493, September.
    10. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shulei Cheng & Yu Yu & Wei Fan & Chunxia Zhu, 2022. "Spatio-Temporal Variation and Decomposition Analysis of Livelihood Resilience of Rural Residents in China," IJERPH, MDPI, vol. 19(17), pages 1-25, August.
    2. Zhe Cheng & Yuntong Zhao & Tao Song & Le Cheng & Wenbin Wang, 2023. "White Elephant or Golden Goose? An Assessment of Middle Route of the South-to-North Water Diversion Project from the Perspective of Regional Water Use Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 819-834, January.
    3. Liang Zhang & Sisi Li & Hugo A. Loáiciga & Yanhua Zhuang & Yun Du, 2015. "Opportunities and challenges of interbasin water transfers: a literature review with bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 279-294, October.
    4. Shengyun Wang & Liancheng Duan & Shuwen Jiang, 2022. "Research on Spatial Differences and Driving Effects of Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    5. Ellis Scharfenaker, Markus P.A. Schneider, 2019. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Paper Series, Department of Economics, University of Utah 2019_08, University of Utah, Department of Economics.
    6. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    7. Stéphane Mussard & Kuan Xu, 2006. "Multidimensional Decomposition of the Sen Index: Some Further Thoughts," Cahiers de recherche 06-08, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    8. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    9. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.
    10. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    11. Luc Savard & Stéphane Mussard, 2005. "Micro-simulation and Multi-decomposition: A Case Study: Philippines," Cahiers de recherche 05-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    12. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    13. Pan Wenjie & Mei Daniel Weiyue, 2022. "Comprehensive Evaluation of China's Green Urbanization Level--Measurement Based on Provincial Panel Data," International Business Research, Canadian Center of Science and Education, vol. 15(9), pages 1-16, September.
    14. Rui Zhao & Hualing He & Ning Zhang, 2015. "Regional Water Footprint Assessment: A Case Study of Leshan City," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    15. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    16. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    17. Allanson, Paul, 2017. "Monitoring income-related health differences between regions in Great Britain: A new measure for ordinal health data," Social Science & Medicine, Elsevier, vol. 175(C), pages 72-80.
    18. Long Zhang & Xiaoyu Luan & Xinyi Chen & Shuhao Zhang & Yukun Liang & Zhaojie Cui, 2022. "Water Footprint Inventory Construction of Cathode Copper Products in a Chinese Eco-Industry," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    19. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    20. Yongrok Choi & Malin Song & Seunghwan Myeong, 2016. "Introduction to the Special Issue on the Sustainable Asia Conference 2015," Sustainability, MDPI, vol. 8(3), pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1270-:d:1332043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.