IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i12p15822-16421d60475.html
   My bibliography  Save this article

Identification of Significant Impact of Silicon Foundry Sands Mining on LCIA

Author

Listed:
  • Jozef Mitterpach

    (Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T.G. Masaryka 24, Zvolen 960 53, Slovakia)

  • Emília Hroncová

    (Department of Environmental Management, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 974 01, Slovakia)

  • Juraj Ladomerský

    (Department of Environmental Management, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 974 01, Slovakia)

  • Karol Balco

    (ZLH Plus a.s., Zlievarenská 533, Hronec 976 45, Slovakia)

Abstract

This paper presents a case study based on a LCA (Life Cycle Assessment) research program of the silicon foundry sand (SFS) due to the large quantity of produced waste foundry sand (WFS). The foundry waste is a high priority sector within the growing European foundry industry. It is necessary to understand the full life cycle of the foundry waste in order to correctly identify magnitude and types of impacts it has on the environment. System boundary includes the processes: mining, modification, packing, storage and transport to foundry. Inventory analysis data were analyzed and finally converted to the functional unit, which has been defined as one ton of SFS. The resulting environmental impact of SFS production in endpoint is: consumption of natural resources 70.9%, ecosystem quality 18.2% and human health 10.9%. The following portions, with respective percentages, have the greatest overall effect on these results: diesel fuel consumption 32.4% and natural gas consumption 28.7%, electricity usage 17.2%, transport 12.2%, devastation caused by the SFS 5.35% and oil (engine, gear and hydraulic) consumption 4.14%. The highest contributor to the diesel fuel consumption is the SFS exploitation. The overall effect of desiccation was 35.8% and was caused by high consumption of resources and electricity.

Suggested Citation

  • Jozef Mitterpach & Emília Hroncová & Juraj Ladomerský & Karol Balco, 2015. "Identification of Significant Impact of Silicon Foundry Sands Mining on LCIA," Sustainability, MDPI, vol. 7(12), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15822-16421:d:60475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/12/15822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/12/15822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noori, Mehdi & Tatari, Omer & Nam, BooHyun & Golestani, Behnam & Greene, James, 2014. "A stochastic optimization approach for the selection of reflective cracking mitigation techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 367-378.
    2. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Wei & Peter B. Samuelsson & Anders Tilliander & Rutger Gyllenram & Pär G. Jönsson, 2020. "Energy Consumption and Greenhouse Gas Emissions of Nickel Products," Energies, MDPI, vol. 13(21), pages 1-22, October.
    2. Lo Piano, Samuele & Mayumi, Kozo, 2017. "Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation," Applied Energy, Elsevier, vol. 186(P2), pages 167-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    3. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    4. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    5. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    6. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    7. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    8. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    9. Gonçalves da Silva, C., 2010. "The fossil energy/climate change crunch: Can we pin our hopes on new energy technologies?," Energy, Elsevier, vol. 35(3), pages 1312-1316.
    10. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    11. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    12. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    13. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    14. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    15. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    16. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    17. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    18. Zuser, Anton & Rechberger, Helmut, 2011. "Considerations of resource availability in technology development strategies: The case study of photovoltaics," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 56-65.
    19. Ercan, Tolga & Zhao, Yang & Tatari, Omer & Pazour, Jennifer A., 2015. "Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options," Energy, Elsevier, vol. 93(P1), pages 323-334.
    20. Ivan Udalov, 2021. "The Transition to Renewable Energy Sources as a Threat to Resource Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 460-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15822-16421:d:60475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.