IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i11p2307-2322d14910.html
   My bibliography  Save this article

Energy Return on Investment (EROI) of Oil Shale

Author

Listed:
  • Cutler J. Cleveland

    () (Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA)

  • Peter A. O’Connor

    () (Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA)

Abstract

The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process) as an energy cost. The energy return on investment (EROI) for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel) is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy) and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

Suggested Citation

  • Cutler J. Cleveland & Peter A. O’Connor, 2011. "Energy Return on Investment (EROI) of Oil Shale," Sustainability, MDPI, Open Access Journal, vol. 3(11), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:11:p:2307-2322:d:14910
    as

    Download full text from publisher

    File URL: http://www.mdpi.com/2071-1050/3/11/2307/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/2071-1050/3/11/2307/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Delucchi, Mark, 2003. "A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials," Institute of Transportation Studies, Working Paper Series qt9vr8s1bb, Institute of Transportation Studies, UC Davis.
    2. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    3. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, Open Access Journal, vol. 8(2), pages 1-22, January.
    2. Virginia Di Nino & Ivan Faiella, 2013. "The �new� non-conventional hydrocarbons: the solution to the energy conundrum?," Questioni di Economia e Finanza (Occasional Papers) 205, Bank of Italy, Economic Research and International Relations Area.
    3. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
    4. repec:eee:ecomod:v:271:y:2014:i:c:p:10-20 is not listed on IDEAS
    5. repec:eee:energy:v:126:y:2017:i:c:p:13-20 is not listed on IDEAS
    6. repec:eee:energy:v:144:y:2018:i:c:p:232-242 is not listed on IDEAS
    7. Trivedi, Parthsarathi & Olcay, Hakan & Staples, Mark D. & Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Energy return on investment for alternative jet fuels," Applied Energy, Elsevier, vol. 141(C), pages 167-174.
    8. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    9. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    10. Buonocore, Elvira & Franzese, Pier Paolo & Ulgiati, Sergio, 2012. "Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective," Energy, Elsevier, vol. 37(1), pages 69-78.
    11. Hallock, John L. & Wu, Wei & Hall, Charles A.S. & Jefferson, Michael, 2014. "Forecasting the limits to the availability and diversity of global conventional oil supply: Validation," Energy, Elsevier, vol. 64(C), pages 130-153.
    12. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    13. Alexander Safronov & Anton Sokolov, 2014. "Preliminary Calculation of the EROI for the Production of Crude Oil and Light Oil Products in Russia," Sustainability, MDPI, Open Access Journal, vol. 6(9), pages 1-19, September.

    More about this item

    Keywords

    shale oil; EROI; in situ production; surface retorting; petroleum;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:11:p:2307-2322:d:14910. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: http://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.