IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3171-d1627177.html
   My bibliography  Save this article

Dynamic Minimum Service Level of Demand–Responsive Transit: A Prospect Theory Approach

Author

Listed:
  • Myeonggeun Jang

    (Department of Transportation Planning & Management, Korea National University of Transportation, Chungju 16106, Republic of Korea)

  • Sunghee Lee

    (Department of Transportation Planning & Management, Korea National University of Transportation, Chungju 16106, Republic of Korea)

  • Jihwan Kim

    (Mobility Research Division, Gyeonggi Research Institute, Suwon 16207, Republic of Korea)

  • Jooyoung Kim

    (Department of Transportation Planning & Management, Korea National University of Transportation, Chungju 16106, Republic of Korea)

Abstract

Demand–responsive transit (DRT) provides flexible, user-centric services and is gaining attention as a solution to modern transportation challenges. Establishing a minimum service level is crucial for its effectiveness, yet existing methods rely on supplier-centric indicators that fail to reflect user psychology and the flexible nature of DRT. To address this, this study applied a prospect theory from behavioral economics and used logistic regression analysis of stated preference survey data to determine minimum service levels based on user perceptions. To account for regional variations, we classified user groups based on primary transportation mode, travel purpose, and age, proposing dynamic minimum service levels tailored to each group. Additionally, using the maximum likelihood estimation method, we estimated value function parameters for the prospect theory, allowing us to analyze users’ loss aversion and sensitivity to DRT services. The findings indicated that users would accept higher fares for DRT than for conventional public transportation, provided it offers shorter travel times. Sensitivity to service levels varied across user groups, highlighting the need for differentiated policies. This study provides insights to optimize DRT operations, improve user satisfaction, and guide policies that reflect regional and demographic characteristics, enhancing the efficiency and effectiveness of DRT services.

Suggested Citation

  • Myeonggeun Jang & Sunghee Lee & Jihwan Kim & Jooyoung Kim, 2025. "Dynamic Minimum Service Level of Demand–Responsive Transit: A Prospect Theory Approach," Sustainability, MDPI, vol. 17(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3171-:d:1627177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schwanen, Tim & Ettema, Dick, 2009. "Coping with unreliable transportation when collecting children: Examining parents' behavior with cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 511-525, June.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Katarzyna M. Werner & Horst Zank, 2019. "A revealed reference point for prospect theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(4), pages 731-773, June.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Sergei Dytckov & Jan A. Persson & Fabian Lorig & Paul Davidsson, 2022. "Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    6. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    7. Baier, Moritz Jon & Sörensen, Leif & Schlüter, Jan Christian, 2024. "How successful is my DRT system? A review of different parameters to consider when developing flexible public transport systems," Transport Policy, Elsevier, vol. 159(C), pages 130-142.
    8. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    9. Hyunmyung Kim & Jaeheon Choi & Sungjin Cho & Feng Liu & Hyungmin Jin & Suhwan Lim & Dongjun Kim & Jun Lee & Chang-Hyeon Joh, 2022. "Identifying Different Sources of the Benefit: Simulation of DRT Operation in the Heartland and Hinterland Regions," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    3. Jou, Rong-Chang & Chen, Ke-Hong, 2013. "An application of cumulative prospect theory to freeway drivers’ route choice behaviours," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 123-131.
    4. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    5. Avineri, Erel, 2012. "On the use and potential of behavioural economics from the perspective of transport and climate change," Journal of Transport Geography, Elsevier, vol. 24(C), pages 512-521.
    6. Hongli Feng & Xiaodong Du & David A. Hennessy, 2020. "Depressed demand for crop insurance contracts, and a rationale based on third generation Prospect Theory," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 59-73, January.
    7. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    8. Kontosakos, Vasileios E. & Hwang, Soosung & Kallinterakis, Vasileios & Pantelous, Athanasios A., 2024. "Long-term dynamic asset allocation under asymmetric risk preferences," European Journal of Operational Research, Elsevier, vol. 312(2), pages 765-782.
    9. Mohammed Abdellaoui & Han Bleichrodt & Enrico Diecidue & Horst Zank, 2022. "Introduction to the Special Issue in Honor of Peter Wakker," Theory and Decision, Springer, vol. 92(3), pages 433-444, April.
    10. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    11. Daniel Muller & Tshilidzi Marwala, 2019. "Relative Net Utility and the Saint Petersburg Paradox," Papers 1910.09544, arXiv.org, revised May 2020.
    12. de Moraes Ramos, Giselle & Daamen, Winnie & Hoogendoorn, Serge, 2013. "Modelling travellers' heterogeneous route choice behaviour as prospect maximizers," Journal of choice modelling, Elsevier, vol. 6(C), pages 17-33.
    13. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    14. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    15. Ulrich Schmidt & Horst Zank, 2022. "Chance theory: A separation of riskless and risky utility," Journal of Risk and Uncertainty, Springer, vol. 65(1), pages 1-32, August.
    16. Yan Li & Jiale Zhang, 2024. "Evolutionary Game Analysis of Low-Carbon Incentive Behaviour of Power Battery Recycling Based on Prospect Theory," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    17. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    18. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    19. Olivier L'Haridon & Craig S. Webb & Horst Zank, 2021. "An Effective and Simple Tool for Measuring Loss Aversion," Economics Discussion Paper Series 2107, Economics, The University of Manchester.
    20. Jinrui Pan & Craig S. Webb & Horst Zank, 2019. "Delayed probabilistic risk attitude: a parametric approach," Theory and Decision, Springer, vol. 87(2), pages 201-232, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3171-:d:1627177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.