IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1202-d1582290.html
   My bibliography  Save this article

Does Multidimensional Urbanization Help Reduce Environmental Pollution?—Evidence from Three Major Urban Agglomerations in the Yangtze River Economic Belt

Author

Listed:
  • Lijie Wei

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China
    Dongying Institute, Shandong Normal University, Dongying 257092, China)

  • Yu Cheng

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China
    Dongying Institute, Shandong Normal University, Dongying 257092, China)

  • Zhibao Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China
    Dongying Institute, Shandong Normal University, Dongying 257092, China)

  • Zhilong Pan

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China
    Dongying Institute, Shandong Normal University, Dongying 257092, China)

  • Guangzhi Qi

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China
    Dongying Institute, Shandong Normal University, Dongying 257092, China)

Abstract

China’s rapid urbanization has spurred economic growth and posed environmental challenges. We investigate the relationship between multidimensional urbanization and environmental pollution by a fixed effect model based on the panel data of 70 cities in three major urban agglomerations in the Yangtze River Economic Belt during 2005–2020. Overall, environmental pollution aggravates and then decreases in three major urban agglomerations, which is closely related to China’s environmental pollution control policies. Environmental pollution shows obvious spatial heterogeneities by five levels in three major urban agglomerations, which have been gradually changed from high-value levels to low-value levels. In the Yangtze River Economic Belt, environmental pollution is dominated by “High–High” and “Low–Low” clusters. Among them, “High–High” clusters move eastwards, while “Low–Low” clusters gradually concentrate southeastwards. Multidimensional urbanization helps to alleviate regional environmental pollution. Economic, social, and land urbanization reduces environmental pollution in three urban agglomerations to a certain extent. Population urbanization has a non-significant effect on environmental pollution. Social urbanization has improved environmental pollution in the Chengdu–Chongqing urban agglomeration (CC) and the Yangtze River Delta (YRD), which is increased by population urbanization in the middle reaches of the Yangtze River (MYR) and is improved by comprehensive urbanization in CC.

Suggested Citation

  • Lijie Wei & Yu Cheng & Zhibao Wang & Zhilong Pan & Guangzhi Qi, 2025. "Does Multidimensional Urbanization Help Reduce Environmental Pollution?—Evidence from Three Major Urban Agglomerations in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 17(3), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1202-:d:1582290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    4. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    5. Zhilong Pan & Zhibao Wang & Xin Cui, 2024. "New Interpretation of Human–Land Relation: Differentiated Impacts of Global Demographic Transition on Carbon Emissions," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    2. Chukwuemeka Chinonso Emenekwe & Robert Ugochukwu Onyeneke & Chinedum Uzoma Nwajiuba & Ifeoma Quinette Anugwa & Obioma Uchenna Emenekwe, 2025. "Determinants of consumption-based and production-based carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10303-10339, May.
    3. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    4. Mayra Vega-Campa & Francisco J André & Mario Soliño, 2023. "Socioeconomic driving forces behind air polluting emissions in Mexico," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-13, October.
    5. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    6. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    8. Muhammad, Anees & Ishfaq, Ahmed, 2011. "Industrial development, agricultural growth, urbanization and environmental Kuznets curve in Pakistan," MPRA Paper 33469, University Library of Munich, Germany.
    9. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    10. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    11. Senlin Hu & Gang Zeng & Xianzhong Cao & Huaxi Yuan & Bing Chen, 2021. "Does Technological Innovation Promote Green Development? A Case Study of the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 18(11), pages 1-18, June.
    12. Daxue Kan & Wenqing Yao & Xia Liu & Lianju Lyu & Weichiao Huang, 2023. "Study on the Coordination of New Urbanization and Water Ecological Civilization and Its Driving Factors: Evidence from the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(6), pages 1-24, June.
    13. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    14. Linna Chen & Shiyi Chen, 2015. "The Estimation of Environmental Kuznets Curve in China: Nonparametric Panel Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 405-420, October.
    15. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," CESifo Working Paper Series 2758, CESifo.
    16. Yingchao Song & Yisheng Gao & Shuxin Zhang & Huizhong Dong & Xuefeng Liu, 2024. "Research on the Coupling Coordination and Driving Mechanisms of New-Type Urbanization and the Ecological Environment in China’s Yangtze River Delta," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    17. Auci, Sabrina & Castelli, Annalisa, 2011. "Pollution and economic growth: a maximum likelihood estimation of environmental Kuznets curve," MPRA Paper 53441, University Library of Munich, Germany.
    18. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    19. Xiang, Tao & Malik, Tariq H. & Nielsen, Klaus, 2020. "The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    20. Germani, Anna Rita & Morone, Piergiuseppe & Testa, Giuseppina, 2014. "Environmental justice and air pollution: A case study on Italian provinces," Ecological Economics, Elsevier, vol. 106(C), pages 69-82.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1202-:d:1582290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.