IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5981-d1690524.html
   My bibliography  Save this article

Assessing and Projecting Long-Term Trends in Global Environmental Air Quality

Author

Listed:
  • Yongtao Jin

    (School of Economics, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This study focuses on trend analysis and expectations for the duration of control for environmental air quality (EAQ) indicators, assesses the current EAQ conditions across global countries, and presents reasonable suggestions for environmental control. The study begins by examining the annual, per capita, and per square meter ( m 2 ) carbon dioxide (CO 2 ) emission peak and standardizations, where carbon standardization is a replacement for carbon neutrality. A similar quantitative methodology was employed to assess classical air quality factors such as sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). The findings suggest that the average control year length (ACYL) of NO x is longer than that of SO 2 , and the ACYL of SO 2 is, in turn, longer than that of CO 2 . From an energy structure perspective, regressions results indicate that biofuel and wind power contribute to improvements in EAQ, while coal, oil, and gas power exert negative impacts. Moreover, a long-term EAQ model utilizing an adjusted max–min normalization method is proposed to integrate various EAQ indicators. This study also presents an EAQ ranking for global countries and recommends countries with critical EAQ challenges. The results demonstrate that it is plausible to control EAQ factors at an excellent level with advances in control technologies and effective measures by government, industries, and individuals.

Suggested Citation

  • Yongtao Jin, 2025. "Assessing and Projecting Long-Term Trends in Global Environmental Air Quality," Sustainability, MDPI, vol. 17(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5981-:d:1690524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Myrick Freeman III, 2002. "Environmental Policy Since Earth Day I: What Have We Gained?," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 125-146, Winter.
    2. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    3. Akshaya Jha & Gordon Leslie, 2025. "Start-up Costs and Market Power: Lessons from the Renewable Energy Transition," American Economic Review, American Economic Association, vol. 115(2), pages 690-726, February.
    4. Martinez-Zarzoso, Inmaculada & Bengochea-Morancho, Aurelia, 2004. "Pooled mean group estimation of an environmental Kuznets curve for CO2," Economics Letters, Elsevier, vol. 82(1), pages 121-126, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    2. Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
    3. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    4. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    5. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    6. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    7. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    8. Raffin, Natacha & Seegmuller, Thomas, 2014. "Longevity, pollution and growth," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 22-33.
    9. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    10. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    11. Moses Nyakuwanika & Huibrecht Margaretha van der Poll & John Andrew van der Poll, 2021. "A Conceptual Framework for Greener Goldmining through Environmental Management Accounting Practices (EMAPs): The Case of Zimbabwe," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    12. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.
    13. David I.Stern, 2009. "Between estimates of the environmental Kuznets curve," Environmental Economics Research Hub Research Reports 0934, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
    14. Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
    15. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    16. John Loomis & Bryon Allen, 2008. "Using Non Market Valuation to Inform the Choice Between Permits and Fees in Environmental Regulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 329-337, July.
    17. Karimkashi, Shervin & Amidpour, Majid, 2012. "Total site energy improvement using R-curve concept," Energy, Elsevier, vol. 40(1), pages 329-340.
    18. Li Bo & Tan Chao & Dai Chengbo & Tan Haobo & Xu Yunbao, 2024. "Environmental Innovation and Green Entrepreneurship in China: a Non-linear Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 16206-16226, December.
    19. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    20. Khribich, Abir & Kacem, Rami H. & Dakhlaoui, Ahlem, 2021. "Causality nexus of renewable energy consumption and social development: Evidence from high-income countries," Renewable Energy, Elsevier, vol. 169(C), pages 14-22.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5981-:d:1690524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.