IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5916-d1688701.html
   My bibliography  Save this article

Technical Trends, Radical Innovation, and the Economics of Sustainable, Industrial-Scale Electric Heating for Energy Efficiency and Water Savings

Author

Listed:
  • A. A. Vissa

    (MHI Inc., Cincinnati, OH 45215, USA)

  • J. A. Sekhar

    (MHI Inc., Cincinnati, OH 45215, USA
    College of Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial heating has the potential to substantially reduce the total energy consumed in industrial heating processes and significantly mitigate the rate of global warming. Advances in electrical heating technologies are driven by enhanced energy conversion, compactness, and precision control capabilities, ensuring attractive financial payback periods for clean, energy-efficient equipment. These advancements stem from the use of improved performance materials, process optimization, and waste heat utilization practices, particularly at high temperatures. The technical challenges associated with large-scale, heavy-duty electric process heating are addressed through the novel innovations discussed in this article. Electrification and the corresponding energy efficiency improvements reduce the water consumed for industrial steam requirements. The article reviews new technologies that replace conventional process gas heaters and pressure boilers with efficient electric process gas heaters and instant steam generators, operating in the high kilowatt and megawatt power ranges with very high-temperature capabilities. Financial payback calculations for energy-optimized processes are illustrated with examples encompassing a range of comparative energy costs across various temperatures. The economics and implications of waste heat utilization are also examined in this article. Additionally, the role of futuristic, radical technical innovations is evaluated as a sustainable pathway that can significantly lower energy consumption without compromising performance objectives. The potential for a new paradigm of self-organization in processes and final usage objectives is briefly explored for sustainable innovations in thermal engineering and materials development. The policy implications and early adoption of large-scale, energy-efficient thermal electrification are discussed in the context of temperature segmentation for industrial-scale processes and climate-driven asset losses. Policy shifts towards incentivizing energy efficiency at the manufacturing level of heater use are recommended as a pathway for deep decarbonization.

Suggested Citation

  • A. A. Vissa & J. A. Sekhar, 2025. "Technical Trends, Radical Innovation, and the Economics of Sustainable, Industrial-Scale Electric Heating for Energy Efficiency and Water Savings," Sustainability, MDPI, vol. 17(13), pages 1-35, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5916-:d:1688701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connelly, Michael C. & Sekhar, J.A., 2012. "U. S. energy production activity and innovation," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 30-46.
    2. Ki Seok Kim & Seunghwan Seo & Junyoung Kwon & Doyoon Lee & Changhyun Kim & Jung-El Ryu & Jekyung Kim & Jun Min Suh & Hang-Gyo Jung & Youhwan Jo & June-Chul Shin & Min-Kyu Song & Jin Feng & Hogeun Ahn , 2024. "Growth-based monolithic 3D integration of single-crystal 2D semiconductors," Nature, Nature, vol. 636(8043), pages 615-621, December.
    3. Correia Sinézio Martins, Edlaine & Lépine, Julien & Corbett, Jacqueline, 2024. "Assessing the effectiveness of financial incentives on electric vehicle adoption in Europe: Multi-period difference-in-difference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    4. Svenn Jensens & Kristina Mohlin & Karen Pittel & Thomas Sterner, 2015. "An Introduction to the Green Paradox: The Unintended Consequences of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 246-265.
    5. Winskel, Mark & Heptonstall, Philip & Gross, Robert, 2024. "Reducing heat pump installed costs: Reviewing historic trends and assessing future prospects," Applied Energy, Elsevier, vol. 375(C).
    6. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    7. Giacomo Campagnola & Bruno S. Sergi & Emiliano Sironi, 2025. "Attitudes Towards Climate Change and Energy Demand: Evidence from the European Social Survey," Sustainability, MDPI, vol. 17(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André de Palma & R. Lindsey & S. Proost & Y. Riou & A. Trannoy, "undated". "Why combating climate change is so challenging," THEMA Working Papers 2025-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Larch, Mario & Wanner, Joschka, 2024. "The consequences of non-participation in the Paris Agreement," Open Access Publications from Kiel Institute for the World Economy 307097, Kiel Institute for the World Economy (IfW Kiel).
    3. Larch, Mario & Wanner, Joschka, 2024. "The consequences of non-participation in the Paris Agreement," Open Access Publications from Kiel Institute for the World Economy 302105, Kiel Institute for the World Economy (IfW Kiel).
    4. A. de Palma & R. Lindsey & S. Proost & Y. Riou & A. Trannoy, 2025. "Why combating climate change is so challenging," THEMA Working Papers 2025-10, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Larch, Mario & Wanner, Joschka, 2024. "The consequences of non-participation in the Paris Agreement," European Economic Review, Elsevier, vol. 163(C).
    6. Potthoff, Ugne & Brudermueller, Tobias & Hopf, Konstantin & Wortmann, Felix, 2025. "Optimization of heating curves for heat pumps in operation: Outdoor temperature ranges for energy-efficient heating curve shifts," Applied Energy, Elsevier, vol. 389(C).
    7. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    8. Carrilho-Nunes, Inês & Catalão-Lopes, Margarida, 2022. "The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 255-264.
    9. Ambec, Stefan & Esposito, Federico & Pacelli, Antonia, 2024. "The economics of carbon leakage mitigation policies," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    10. Alexander Alexandrovich Golub & Marek Hanusch & Bardal,Diogo & Bruce Ian Keith & Daniel Navia Simon & Cornelius Fleischhaker, 2025. "Innovative Financial Instruments and Their Role in the Development of Jurisdictional REDD+," Policy Research Working Paper Series 11114, The World Bank.
    11. Misch, Florian & Wingender, Philippe, 2024. "Revisiting carbon leakage," Energy Economics, Elsevier, vol. 140(C).
    12. Tracey Osborne & Sylvia Cifuentes & Laura Dev & Seánna Howard & Elisa Marchi & Lauren Withey & Marcelo Santos Rocha da Silva, 2024. "Climate justice, forests, and Indigenous Peoples: toward an alternative to REDD + for the Amazon," Climatic Change, Springer, vol. 177(8), pages 1-28, August.
    13. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).
    14. Marc GRONWALD & Ngo Van LONG & Luise ROEPKE, 2017. "Three Degrees of Green Paradox: The Weak, The Strong, and the Extreme Green Paradox," Cahiers de recherche 02-2017, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    16. Ino, Hiroaki & Matsueda, Norimichi & Matsumura, Toshihiro, 2022. "Market competition and strategic choices of electric power sources under fluctuating demand," Resource and Energy Economics, Elsevier, vol. 68(C).
    17. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    18. Azizbek Kamolov & Zafar Turakulov & Patrik Furda & Miroslav Variny & Adham Norkobilov & Marcos Fallanza, 2024. "Techno-Economic Feasibility Analysis of Post-Combustion Carbon Capture in an NGCC Power Plant in Uzbekistan," Clean Technol., MDPI, vol. 6(4), pages 1-32, October.
    19. John Bistline & Geoffrey Blanford & Maxwell Brown & Dallas Burtraw & Maya Domeshek & Jamil Farbes & Allen Fawcett & Anne Hamilton & Jesse Jenkins & Ryan Jones & Ben King & Hannah Kolus & John Larsen &, 2023. "Emissions and Energy Impacts of the Inflation Reduction Act," Papers 2307.01443, arXiv.org.
    20. Na Liu & Jiancheng Guan, 2015. "Dynamic evolution of collaborative networks: evidence from nano-energy research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1895-1919, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5916-:d:1688701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.