IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5155-d1671478.html
   My bibliography  Save this article

Prioritizing Key Factors in Refrigerant Substitution for GHG Emission Reduction: An Integrated DEMATEL-ISM-MICMAC Approach

Author

Listed:
  • Hui Zhang

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Shengzhong Huang

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Longhui Li

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Shuang Ouyang

    (Business School, University of International Business and Economics, Beijing 100029, China)

Abstract

To implement the Kigali Amendment to the Montreal Protocol, the global academic community has intensified its research on environmentally friendly refrigerant substitutes. This effort aims to effectively reduce greenhouse gas emissions and facilitate the achievement of carbon neutrality goals. In this study, 14 key influencing factors were identified through the Delphi method, and the Decision-making Trial and Evaluation Laboratory (DEMATEL) approach was innovatively applied to systematically analyze the interrelationships among these factors. The results indicate that technological innovation related to refrigerant substitution ranks first with a centrality score of 5.429, confirming it as the core driving factor for refrigerant substitution. Subsequently, through the integration of Interpretive Structural Modeling (ISM) and Cross-impact Matrix Multiplication Applied to Classification (MICMAC), a hierarchical structure of influencing factors was further developed. This clarified high-driving factors such as government policies and life-cycle costs, as well as highly interrelated factors including climate conditions, greenhouse gas emissions, and performance coefficients. The key contribution of this paper is its success in overcoming the limitations of single-factor analysis by integrating multiple dimensions of influencing factors to construct a hierarchical classification. This innovative and systematic theoretical framework not only offers a scientific basis and decision-making support for refrigerant substitution but also possesses substantial theoretical value and practical guidance. Furthermore, it serves as an essential reference for advancing the development of low-carbon refrigeration technologies.

Suggested Citation

  • Hui Zhang & Shengzhong Huang & Longhui Li & Shuang Ouyang, 2025. "Prioritizing Key Factors in Refrigerant Substitution for GHG Emission Reduction: An Integrated DEMATEL-ISM-MICMAC Approach," Sustainability, MDPI, vol. 17(11), pages 1-27, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5155-:d:1671478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
    2. You, Tian & Wang, Fang, 2023. "Green ground source heat pump using various low-global-warming-potential refrigerants: Thermal imbalance and long-term performance," Renewable Energy, Elsevier, vol. 210(C), pages 159-173.
    3. Chae, Jung-Hoon & Choi, Jong Min, 2015. "Evaluation of the impacts of high stage refrigerant charge on cascade heat pump performance," Renewable Energy, Elsevier, vol. 79(C), pages 66-71.
    4. Saif, Ahmed & Elhedhli, Samir, 2016. "Cold supply chain design with environmental considerations: A simulation-optimization approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 274-287.
    5. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    6. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    7. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    8. Mi Zhou & Hongxun Liu & Liqun Peng & Yue Qin & Dan Chen & Lin Zhang & Denise L. Mauzerall, 2022. "Environmental benefits and household costs of clean heating options in northern China," Nature Sustainability, Nature, vol. 5(4), pages 329-338, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priom Mahmud & Sanjoy Kumar Paul & Abdullahil Azeem & Priyabrata Chowdhury, 2021. "Evaluating Supply Chain Collaboration Barriers in Small- and Medium-Sized Enterprises," Sustainability, MDPI, vol. 13(13), pages 1-28, July.
    2. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    3. Jia Liu & Yansheng Wang & Cunbao Deng & Zhixin Jin & Gaolei Wang & Chen Yang & Xiaoyu Li, 2023. "Research on safety supervision and management system of China railway based on association rule and DEMATEL," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-22, December.
    4. Haidong Guo & Xingshan Gao & Qiangqiang Lin & Baosheng Gao, 2023. "Assessing the Degradation of Safety Management Performance in Large Construction Projects: An Investigation and Decision Model Based on Complex Network Modeling," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    5. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Zhu, Lin & Sheng, Yu & Liao, Hua & Blaschke, Maximilian J., 2025. "Enhancing clean cooking energy transition through living facility improvements: Experience from China," Energy Economics, Elsevier, vol. 144(C).
    7. Gul Shah Sabary & Lukáš Durda & Arif Ibne Asad & Aleksandr Kljuènikov, 2023. "Key motivational factors behind Asian immigrant entrepreneurship: A causal relationship analysis employing the DEMATEL approach for Germany," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 18(1), pages 287-318, March.
    8. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    9. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    10. Hamed Nozari & Esmaeil Najafi & Mohammad Fallah & Farhad Hosseinzadeh Lotfi, 2019. "Quantitative Analysis of Key Performance Indicators of Green Supply Chain in FMCG Industries Using Non-Linear Fuzzy Method," Mathematics, MDPI, vol. 7(11), pages 1-19, October.
    11. Zhang, Xiunian & Lam, Jasmine Siu Lee, 2018. "Shipping mode choice in cold chain from a value-based management perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 147-167.
    12. Yuqian Shi & Sheng Yu & Jie Mei, 2025. "Strategic Decision-Making Enhancement through Graph-Optimized DEMATEL-AHP with Pruning," Group Decision and Negotiation, Springer, vol. 34(1), pages 105-133, February.
    13. Salman Shooshtarian & Argaw Tarekegn Gurmu & Muhammad Nateque Mahmood, 2024. "Application of the DEMATEL approach to analyse the root causes of building defects," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4641-4660, October.
    14. Isabela Caroline de Sousa & Tiago F. A. C. Sigahi & Izabela Simon Rampasso & Gustavo Hermínio Salati Marcondes de Moraes & Walter Leal Filho & João Henrique Paulino Pires Eustachio & Rosley Anholon, 2024. "A Delphi–Fuzzy Delphi Study on SDGs 9 and 12 after COVID-19: Case Study in Brazil," Forecasting, MDPI, vol. 6(3), pages 1-18, July.
    15. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    16. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    17. Ahmed, Umair & Carpitella, Silvia & Certa, Antonella, 2021. "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Jung-Fa Tsai & Ruey-Chu Lee & Dinh-Hieu Tran & Minh-Chau Hoang & Ming-Hua Lin, 2025. "A Study on Sustainability Indicators for Energy Companies in Viet Nam," Sustainability, MDPI, vol. 17(3), pages 1-18, January.
    19. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    20. Samuel Boahen & Kwang Ho Lee & Jong Min Choi, 2019. "Refrigerant Charge Fault Detection and Diagnosis Algorithm for Water-to-Water Heat Pump Unit," Energies, MDPI, vol. 12(3), pages 1-25, February.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5155-:d:1671478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.