Author
Listed:
- Li Qu
(Business School, Beijing Information Science and Technology University, Beijing 100192, China)
- Hanxi Zheng
(Business School, Beijing Information Science and Technology University, Beijing 100192, China)
- Yueting Liu
(China Association for Quality, Beijing 100048, China)
Abstract
The value network of the high-tech park constitutes a value co-creation system where multiple entities facilitate knowledge transformation through interaction, thereby achieving collaborative innovation. The reasonable distribution of collaborative innovation benefits among various innovation entities is a critical factor in maintaining the motivation for innovation within the value network. This study examines the co-creation mechanism of the value network in high-tech parks from the perspective of knowledge innovation, with the aim of enhancing the efficiency of knowledge transfer and spillover among entities. Additionally, it seeks to establish a fairer and more rational benefit distribution framework to promote collaborative innovation and ensure the stable operation of the value network. Firstly, we identify the entities involved in value co-creation within the high-tech park. Subsequently, we analyze the roles and interrelationships of these entities within the value co-creation network. We determine the knowledge flow pathways by employing the shortest path method, and innovatively construct an MMPP/M/C queuing model to depict the processes of knowledge transfer and spillover among the entities engaged in value co-creation. We optimize and solve the queuing model using the matrix geometric method, deriving metrics such as the average queue length, average arrival rate, average waiting time, and service intensity under the steady state of the system, and verify the applicability and effectiveness of the model in the application of the high-tech park through empirical data. Finally, by integrating the improved Shapley value method, a benefit distribution model is constructed that incorporates five types of factors: contribution level, resource input, knowledge spillover effect, effort level, and risk undertaking. The rationality and operability of this model are validated through computational examples. Research findings indicate that the optimized queuing model enhances the efficiency of knowledge transfer and spillover among entities, while the refined benefit distribution mechanism effectively compensates entities with high contribution levels, substantial resource inputs, significant knowledge spillover effects, elevated effort levels, and high risk assumption levels. This provides both theoretical support and practical guidance for sustaining the long-term stable operation of the value network.
Suggested Citation
Li Qu & Hanxi Zheng & Yueting Liu, 2025.
"Value Network Co-Creation Mechanism of a High-Tech Park from the Perspective of Knowledge Innovation,"
Sustainability, MDPI, vol. 17(10), pages 1-33, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:10:p:4563-:d:1657426
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4563-:d:1657426. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.