IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4541-d1656998.html
   My bibliography  Save this article

The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations

Author

Listed:
  • Yanke Guo

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Changsheng Zhao

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Xuzhen Liu

    (National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China)

  • Yanan Dong

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Wei Liu

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Qingfeng Chen

    (College of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Shigang Ding

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Jing Zhang

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Beibei Guo

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Xinguo Gao

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

Abstract

To address soil degradation risk caused by the long-term application of organic and nitrogen fertilizers in facility vegetable fields, this study selected soils with cumulative cultivation durations of 1, 3, 6, and 9 years to investigate the impact of organic and nitrogen fertilizer (OFN) application ratios on soil microbial community structure, greenhouse gas emissions, and enzyme activities. The results show that SOC content increases with soil cultivation duration and the proportion of organic fertilizer applied. Organic fertilizer stimulates urease and catalase activities; however, NH 4 + -N in the soil inhibits enzyme activities. Organic fertilizer increases the abundance of Proteobacteria and Bacteroidota, enhancing its potential carbon sequestration capacity and also resulting in higher CH 4 and CO 2 emissions. The microbial community structure is influenced by both fertilizer ratios and soil cultivation duration. As the taxonomic level becomes finer, the number of differential species at the phylum (3), class (3), order (6), family (8), and genus (8) levels increases. The highest Chao1 index in soils of 1, 3, 6, and 9 years was observed at 0%, 25%, 50%, and 75% organic fertilizer substitution ratios, respectively. The 25% organic fertilizer substitution ratio showed better microbial diversity and evenness in 3-, 6-, and 9-year-old soils.

Suggested Citation

  • Yanke Guo & Changsheng Zhao & Xuzhen Liu & Yanan Dong & Wei Liu & Qingfeng Chen & Shigang Ding & Jing Zhang & Beibei Guo & Xinguo Gao, 2025. "The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations," Sustainability, MDPI, vol. 17(10), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4541-:d:1656998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Yuwei Zhang & Shan Tang & Yali Li & Ruonan Li & Shaowen Huang & Hong Wang, 2024. "Risk Assessment of Heavy Metal Accumulation in Cucumber Fruits and Soil in a Greenhouse System with Long-Term Application of Organic Fertilizer and Chemical Fertilizer," Agriculture, MDPI, vol. 14(11), pages 1-17, October.
    3. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    4. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    5. Burke, William J. & Frossard, Emmanuel & Kabwe, Stephen & Jayne, Thom S., 2019. "Understanding fertilizer adoption and effectiveness on maize in Zambia," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    6. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    7. Tuo, Yunfei & Wang, Zhaoyi & Zheng, Yang & Shi, Xiaolan & Liu, Xiangning & Ding, Mingjing & Yang, Qiliang, 2023. "Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng," Agricultural Water Management, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lay, Jann & Nolte, Kerstin & Sipangule, Kacana, 2021. "Large-scale farms in Zambia: Locational patterns and spillovers to smallholder agriculture," World Development, Elsevier, vol. 140(C).
    2. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    3. William J. Burke & Stephen N. Morgan & Thelma Namonje & Milu Muyanga & Nicole M. Mason, 2023. "Beyond the “inverse relationship”: Area mismeasurement may affect actual productivity, not just how we understand it," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 557-569, July.
    4. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    5. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    6. Zhe Zhang & Na Li & Zhanxiang Sun & Guanghua Yin & Yanqing Zhang & Wei Bai & Liangshan Feng & John Yang, 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    7. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    8. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    9. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    10. Ozaki, Ryosuke & Tsujimoto, Yasuhiro & Andriamananjara, Andry & Rakotonindrina, Hobimiarantsoa & Sakurai, Takeshi, 2021. "Impact of Information of Expected Effectiveness Based on Soil Quality on Farmers’ Decision of Fertilizer Use: Evidence from Madagascar," 2021 Conference, August 17-31, 2021, Virtual 315272, International Association of Agricultural Economists.
    11. Fatemeh Javanbakht-Sheikhahmad & Farahnaz Rostami & Hossein Azadi & Hadi Veisi & Farzad Amiri & Frank Witlox, 2024. "Agricultural Water Resource Management in the Socio-Hydrology: A Framework for Using System Dynamics Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2753-2772, June.
    12. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    14. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    15. Yong Li & Liping Wang & Yunfei Yu & Deqiang Zang & Xilong Dai & Shufeng Zheng, 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    16. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    17. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    18. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    19. Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    20. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4541-:d:1656998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.