IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4541-d1656998.html
   My bibliography  Save this article

The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations

Author

Listed:
  • Yanke Guo

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Changsheng Zhao

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Xuzhen Liu

    (National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China)

  • Yanan Dong

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Wei Liu

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Qingfeng Chen

    (College of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Shigang Ding

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Jing Zhang

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Beibei Guo

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Xinguo Gao

    (College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

Abstract

To address soil degradation risk caused by the long-term application of organic and nitrogen fertilizers in facility vegetable fields, this study selected soils with cumulative cultivation durations of 1, 3, 6, and 9 years to investigate the impact of organic and nitrogen fertilizer (OFN) application ratios on soil microbial community structure, greenhouse gas emissions, and enzyme activities. The results show that SOC content increases with soil cultivation duration and the proportion of organic fertilizer applied. Organic fertilizer stimulates urease and catalase activities; however, NH 4 + -N in the soil inhibits enzyme activities. Organic fertilizer increases the abundance of Proteobacteria and Bacteroidota, enhancing its potential carbon sequestration capacity and also resulting in higher CH 4 and CO 2 emissions. The microbial community structure is influenced by both fertilizer ratios and soil cultivation duration. As the taxonomic level becomes finer, the number of differential species at the phylum (3), class (3), order (6), family (8), and genus (8) levels increases. The highest Chao1 index in soils of 1, 3, 6, and 9 years was observed at 0%, 25%, 50%, and 75% organic fertilizer substitution ratios, respectively. The 25% organic fertilizer substitution ratio showed better microbial diversity and evenness in 3-, 6-, and 9-year-old soils.

Suggested Citation

  • Yanke Guo & Changsheng Zhao & Xuzhen Liu & Yanan Dong & Wei Liu & Qingfeng Chen & Shigang Ding & Jing Zhang & Beibei Guo & Xinguo Gao, 2025. "The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations," Sustainability, MDPI, vol. 17(10), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4541-:d:1656998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Burke, William J. & Frossard, Emmanuel & Kabwe, Stephen & Jayne, Thom S., 2019. "Understanding fertilizer adoption and effectiveness on maize in Zambia," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    3. Yuwei Zhang & Shan Tang & Yali Li & Ruonan Li & Shaowen Huang & Hong Wang, 2024. "Risk Assessment of Heavy Metal Accumulation in Cucumber Fruits and Soil in a Greenhouse System with Long-Term Application of Organic Fertilizer and Chemical Fertilizer," Agriculture, MDPI, vol. 14(11), pages 1-17, October.
    4. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    5. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    6. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    7. Tuo, Yunfei & Wang, Zhaoyi & Zheng, Yang & Shi, Xiaolan & Liu, Xiangning & Ding, Mingjing & Yang, Qiliang, 2023. "Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng," Agricultural Water Management, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    2. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    3. Zhe Zhang & Na Li & Zhanxiang Sun & Guanghua Yin & Yanqing Zhang & Wei Bai & Liangshan Feng & John Yang, 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    4. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    5. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    6. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    7. Yong Li & Liping Wang & Yunfei Yu & Deqiang Zang & Xilong Dai & Shufeng Zheng, 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    8. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    9. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    10. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    11. Pengjing Zhang & Tao Xiong, 2025. "Can Agricultural Subsidies Reduce Cropland Abandonment in Rural China?," Agriculture, MDPI, vol. 15(8), pages 1-21, April.
    12. Jianya Zhao & Fanhao Yang & Yanglan Zhang & Shu Wang, 2025. "Increase in Grain Production Potential of China Under 2030 Well-Facilitated Farmland Construction Goal," Land, MDPI, vol. 14(8), pages 1-31, July.
    13. Yan, Zhenxing & Zhang, Wenying & Wang, Qingsuo & Liu, Enke & Sun, Dongbao & Liu, Binhui & Liu, Xiu & Mei, Xurong, 2022. "Changes in soil organic carbon stocks from reducing irrigation can be offset by applying organic fertilizer in the North China Plain," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Wang, Hongyu & Ma, Rongrong & Wang, Juan & Zhang, Huizhong & Zhou, Wei, 2025. "Conserving cropland resilience space in alpine agro-pastoral ecotones: A quantitative study of Qinghai Province," Agricultural Systems, Elsevier, vol. 223(C).
    15. Yanhong Hang & Xue Lu & Xiaoming Li, 2025. "Spatiotemporal Differentiation Characteristics and Zoning of Cultivated Land System Resilience in the Songnen Plain," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    16. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    17. Nicole M. Mason & Ayala Wineman & Solomon T. Tembo, 2020. "Reducing poverty by ‘ignoring the experts’? Evidence on input subsidies in Zambia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(5), pages 1157-1172, October.
    18. Bohao Miao & Yan Zhou & Jianghong Zhu, 2025. "Accurate Identification of High-Potential Reserved Cultivated Land Resources: A Convolutional Neural Network-Based Intelligent Selection Framework Verified in Qinghai Province on the Qinghai–Tibet Pla," Land, MDPI, vol. 14(10), pages 1-24, September.
    19. Wanglin Ma & Hongyun Zheng, 2022. "Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 72-92, January.
    20. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4541-:d:1656998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.