IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4296-d1652160.html
   My bibliography  Save this article

A Sustainability-Oriented Framework for Life Cycle Environmental Cost Accounting and Carbon Financial Optimization in Prefabricated Steel Structures

Author

Listed:
  • Jingjing Liu

    (Economics and Management, Taiyuan University of Technology, Wanbailin District, Taiyuan 030024, China)

  • Hanchao Liu

    (Economics and Management, Taiyuan University of Technology, Wanbailin District, Taiyuan 030024, China)

  • Yun Liu

    (Economics and Management, Taiyuan University of Technology, Wanbailin District, Taiyuan 030024, China)

Abstract

The building sector significantly contributes to global resource depletion and greenhouse gas emissions, necessitating integrated approaches to evaluate both environmental and economic performance. This study developed a sustainability-oriented assessment framework—applied in a Chinese context—that integrates life cycle assessment (LCA), life cycle costing (LCC), and carbon financial optimization to evaluate the life cycle performance of prefabricated steel buildings. Using publicly available databases (CEADs, Ecoinvent, and the Chinese Life Cycle Database), the framework quantified cradle-to-grave environmental impacts across raw material extraction, prefabrication, transport, on-site assembly, operation, and end-of-life stages. Emissions were monetized using standardized emission factors and official cost coefficients, enabling environmental costs to be expressed in financial terms. A dynamic financial simulation module was incorporated to assess the effects of carbon price fluctuations and quota allocation schemes. Sensitivity analyses were performed to examine the influence of key variables such as retrofit investment costs, emission reduction efficiency, and carbon policy scenarios on financial returns. The results show that material production and operational energy use dominate life cycle carbon emissions, jointly contributing more than 90% of the total impacts. Moderate decarbonization investments—such as HVAC upgrades and improved insulation—can achieve positive net economic returns under baseline carbon pricing. This integrated, data-driven framework serves as a practical decision-support tool for policymakers and industry stakeholders. It is adaptable across different regions and material systems, supporting the global transition toward low-carbon and financially viable construction practices.

Suggested Citation

  • Jingjing Liu & Hanchao Liu & Yun Liu, 2025. "A Sustainability-Oriented Framework for Life Cycle Environmental Cost Accounting and Carbon Financial Optimization in Prefabricated Steel Structures," Sustainability, MDPI, vol. 17(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4296-:d:1652160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    2. Marianna Lena Kambanou, 2020. "Life Cycle Costing: Understanding How It Is Practised and Its Relationship to Life Cycle Management—A Case Study," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Ali Madadizadeh & Kamran Siddiqui & Amir A. Aliabadi, 2024. "Review: The Economics Landscape for Building Decarbonization," Sustainability, MDPI, vol. 16(14), pages 1-28, July.
    4. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    5. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daisuke Murakami & Pavel V. Shevchenko & Tomoko Matsui & Aleksandar Arandjelovi'c & Tor A. Myrvoll, 2025. "Climate-economy projections under shared socioeconomic pathways and net-zero scenarios," Papers 2504.11721, arXiv.org.
    2. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    3. Shiran Victoria Shen, 2021. "Integrating Political Science into Climate Modeling: An Example of Internalizing the Costs of Climate-Induced Violence in the Optimal Management of the Climate," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
    6. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    7. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    8. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    9. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    10. Nagisa Shiiba & Hide-Fumi Yokoo & Voravee Saengavut & Siraprapa Bumrungkit, 2023. "Ambiguity Aversion And Individual Adaptation To Climate Change: Evidence From A Farmer Survey In Northeastern Thailand," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-29, February.
    11. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    12. Dominika Siwiec & Andrzej Pacana, 2025. "Life Cycle-Based Product Sustainability Assessment Employing Quality and Cost," Sustainability, MDPI, vol. 17(8), pages 1-26, April.
    13. Mariana Januário & Ricardo Gomes & Patrícia Baptista & Paulo Ferrão, 2024. "Integrated Energy and Environmental Modeling to Design Cost-Effective Building Solutions at a Regional Level," Energies, MDPI, vol. 17(22), pages 1-33, November.
    14. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    15. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    16. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    17. Isaak Mengesha & Debraj Roy, 2025. "Carbon pricing drives critical transition to green growth," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    18. Lackner, Teresa & Fierro, Luca E. & Mellacher, Patrick, 2025. "Opinion dynamics meet agent-based climate economics: An integrated analysis of carbon taxation," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    19. Léo Coppens & Simon Dietz & Frank Venmans, 2024. "Optimal Climate Policy under Exogenous and Endogenous Technical Change: Making Sense of the Different Approaches," CESifo Working Paper Series 11059, CESifo.
    20. Pedro Solano-Pereira & Ana García-González & Luis Javier Miguel González, 2025. "Economic Representation in Water–Energy–Food Nexus Models: A Systematic Review of System Dynamics Approaches," Energies, MDPI, vol. 18(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4296-:d:1652160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.