IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2674-d1363107.html
   My bibliography  Save this article

Biofuel in the Automotive Sector: Viability of Sugarcane Ethanol

Author

Listed:
  • Julio Cesar Marques

    (Laboratory of Energy Efficiency and Industrial Processes, Federal University of ABC, São Bernardo do campo 09606-045, Brazil)

  • Fernando Gasi

    (Laboratory of Energy Efficiency and Industrial Processes, Federal University of ABC, São Bernardo do campo 09606-045, Brazil)

  • Sergio Ricardo Lourenço

    (Laboratory of Energy Efficiency and Industrial Processes, Federal University of ABC, São Bernardo do campo 09606-045, Brazil)

Abstract

In Brazil, sugarcane ethanol competes directly with gasoline as a fuel for motor vehicles, emerging as a challenging biofuel to traditional fossil fuels. The problem this article solves and presents is the Return on Energy Investment (EROI) for the production cycle of first-generation ethanol derived from sugarcane in the central-southern region of Brazil, with the main objective to compare this EROI with the gasoline marketed in Brazil, as documented in the scientific literature. The methodology for the energy analysis of the ethanol production cycle is the ratio between the energy present in a quantity of sugarcane delivered for processing and the energy consumption required for the entire process. This analysis occurs from the agricultural phase through the distribution phase of ethanol for consumption, enabling the calculation of the EROI of sugarcane ethanol and a comparative assessment with the EROI values of the gasoline marketed in Brazil. The results for EROI of sugarcane ethanol fluctuate between 8.20 and 6.52. Therefore, for each unit of energy utilized in processing ethanol, 6.52 to 8.20 units of energy are available for end use. In contrast, the EROI values for gasoline range between 2.34 and 5.50, underscoring the competitive advantage of ethanol in this context.

Suggested Citation

  • Julio Cesar Marques & Fernando Gasi & Sergio Ricardo Lourenço, 2024. "Biofuel in the Automotive Sector: Viability of Sugarcane Ethanol," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2674-:d:1363107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Capaz, Rafael Silva & Carvalho, Vanessa Silveira Barreto & Nogueira, Luiz Augusto Horta, 2013. "Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil," Applied Energy, Elsevier, vol. 102(C), pages 220-228.
    2. Fabre, Adrien, 2019. "Evolution of EROIs of electricity until 2050: Estimation and implications on prices," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    3. Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    4. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    5. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Mandegari, Mohsen & Ebadian, Mahmood & Saddler, Jack (John), 2023. "The need for effective life cycle assessment (LCA) to enhance the effectiveness of policies such as low carbon fuel standards (LCFS's)," Energy Policy, Elsevier, vol. 181(C).
    7. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    8. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    9. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Allegretti, G. & Montoya, M.A. & Bertussi, L.A.S. & Talamini, E., 2022. "When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Lemos, S.V. & Salgado Junior, A.P. & Rebehy, P.C.P.W. & Carlucci, F.V. & Novi, J.C., 2021. "Framework for improving agro-industrial efficiency in renewable energy: Examining Brazilian bioenergy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    14. Yu, Yadong & Guo, Ying & Ma, Tieju, 2023. "Prioritizing the hydrogen pathways for fuel cell vehicles: Analysis of the life-cycle environmental impact, economic cost, and environmental efficiency," Energy, Elsevier, vol. 281(C).
    15. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    16. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    18. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    19. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    20. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    More about this item

    Keywords

    sugarcane; ethanol; bioenergy; EROI;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2674-:d:1363107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.