IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1792-d1343488.html
   My bibliography  Save this article

Willingness to Participate in Vehicle-to-Everything (V2X) in Sweden, 2022—Using an Electric Vehicle’s Battery for More Than Transport

Author

Listed:
  • Rahmat Khezri

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • David Steen

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Le Anh Tuan

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

Abstract

Vehicle-to-everything (V2X) refers to the technology that enables electric vehicles (EVs) to push their battery energy back to the grid. The system’s V2X integration includes key functions like V2G, V2H, V2B, etc. This paper explores the preferences of Swedish EV drivers in contributing to V2X programs through an online questionnaire. Respondents were asked to answer questions in three contexts: (1) claims related to their EV charging, (2) V2G application by EV, and (3) V2H application by EV. The respondents were questioned about the importance of control, pricing, energy sustainability and climate issues, impact on the battery, the acceptability of V2X, range anxiety, financial compensation, as well as how and where they prefer to charge the EV. The results of the survey indicate that Swedish EV drivers are more interested in the V2H application than in V2G. Additionally, they express more concern about range anxiety than battery degradation due to the V2X application.

Suggested Citation

  • Rahmat Khezri & David Steen & Le Anh Tuan, 2024. "Willingness to Participate in Vehicle-to-Everything (V2X) in Sweden, 2022—Using an Electric Vehicle’s Battery for More Than Transport," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1792-:d:1343488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    2. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    3. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    4. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Zhi & Liu, Xiaochen & Zhang, Ji & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2025. "Orderly solar charging of electric vehicles and its impact on charging behavior: A year-round field experiment," Applied Energy, Elsevier, vol. 381(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    2. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    3. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    4. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    5. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).
    6. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    7. Andrea La Nauze & Lana Friesen & Kai Li Lim & Flavio Menezes & Lionel Page & Thara Philip & Jake Whitehead, 2024. "Can Electric Vehicles Aid the Renewable Transition? Evidence from a Field Experiment Incentivising Midday Charging," CESifo Working Paper Series 11386, CESifo.
    8. Lee, Wonjong & Woo, JongRoul & Kim, Yong-gun & Koo, Yoonmo, 2024. "Vehicle-to-grid as a competitive alternative to energy storage in a renewable-dominant power system: An integrated approach considering both electric vehicle drivers' willingness and effectiveness," Energy, Elsevier, vol. 310(C).
    9. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Anderson, Osten & Yu, Nanpeng & Hong, Wanshi & Wang, Bin, 2025. "Impact of flexible and bidirectional charging in medium- and heavy-duty trucks on California’s decarbonization pathway," Applied Energy, Elsevier, vol. 377(PB).
    11. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
    12. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.
    13. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    14. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    16. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    17. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    18. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    19. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1792-:d:1343488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.